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ABSTRACT 

CROSS-CORRELATION BASED PERFORMANCE 

MEASURES FOR CHARACTERIZING THE 

INFLUENCE OF IN-VEHICLE INTERFACES ON 

DRIVING AND COGNITIVE WORKLOAD 

by 

ŽELJKO MEDENICA 

University of New Hampshire, December, 2012 

Driving is a cognitively loading task which requires drivers’ full attention and 

coordination of both mind and body. However, drivers often engage in side activities 

which can negatively impact safety. A typical approach for analyzing the influences of 

side activities on driving is to conduct experiments in which various driving performance 

measures are collected, such as steering wheel angle and lane position. Those measures 

are then transformed, typically using means and variances, before being analyzed 

statistically. However, the problem is that those transformations perform averaging of the 
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acquired data, which can result in missing short, but important events (such as glances 

directed off-road). As a consequence, statistically significant differences may not be 

observed between the tested conditions. Nevertheless, just because the influences of in-

vehicle interactions do not show in the averages, it does not mean that they do not exist or 

should be neglected, especially if the nature of the interactions is such that they can be 

performed frequently (for example, with an infotainment system). This can create a false 

conclusion about the lack of influence of the tested side activity on driving. 

The main contribution of this research is in developing two new performance 

measures inspired by the mathematical function of cross-correlation: one which evaluates 

the cumulative effect and the other which evaluates the effects of individual instances of 

in-vehicle interactions on driving and cognitive load. The results from three driving 

simulator studies demonstrate that our cumulative measure provides more sensitivity to 

the effects of in-vehicle interactions, even when they are not detected through average-

based measures. Additionally, our instance-based measure provides a low-level insight 

into the nature of the influence of individual in-vehicle interactions. Both measures 

produce results that can be ranked, which allows determining the relative size of the 

effect that various in-vehicle interactions have on driving. Finally, we demonstrate a set 

of variables which can be used for predicting the cumulative and instance-based results. 

This predictive ability is important, because it may allow obtaining quick simulation 

results without performing actual experiments, which can be used in the early stages of 

an interface or experiment design process. 
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CHAPTER 1 

INTRODUCTION 

In recent years we have seen a major increase in research concerned with 

driver distraction and the influence of various in-vehicle devices on driving performance 

and cognitive workload. There are two main reasons that contribute to this development. 

First, the amount of time people spend in their vehicles has been steadily increasing, with 

86.1% of American citizens commuting in a car, truck or van in 2009 and spending on 

average 25.1 minutes driving to work (one way) daily, compared to just under 22 minutes 

in 1980 [1]. And second, with the proliferation of computers and the expansion of 

communication networks, new types of electronic devices are becoming available and 

being introduced in vehicles at a rate never seen before [2]. Since driving is usually a 

monotonous activity (especially everyday commutes to work on familiar roads), those 

new devices help drivers make their driving experience more interesting and enjoyable. 

For instance, using a cell phone, smart phone or PDA drivers can send text messages, 

obtain travel directions, check email, surf the Internet, play hand-held games, and so on. 

Furthermore, there is plethora of non-hand-held devices, typical examples being car 

stereos, dashboard GPS units, infotainment systems, and air-conditioning controls, to 

name just a few. This trend, while certainly exciting and benefiting many areas of our 
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daily lives, comes at a price of an increased number of accidents caused by driver 

distraction and inattention [3-7]. For example, based on the results from a naturalistic 

study, Klauer et al. [4] report that dialing on a hand-held device while driving increases 

the risk of an accident by a factor of 3.  

Very often car manufacturers introduce new safety systems, which are 

intended to improve driving safety, such as ABS, automatic cruise control, lane departure 

warnings, etc. Additionally, user interfaces for in-vehicle devices are also changing in 

order to make interactions relatively safe: hands free phones, speech commands for 

controlling various devices, and so on. Even though risk homeostasis may be present [8], 

statistics show that the overall number of car accidents keeps decreasing. Based on a 

NHTSA study [5] published in 2010, the overall number of crashes decreased from 

39,252 in 2005 to 30,797 in 2009. However, according to the same study, the percent of 

crashes which were associated with driver distraction increased from 10% to 16% for the 

same 5-year period. Furthermore, the percent of fatalities with reported driver distraction 

also increased from 10% to 16%. These are important facts which demonstrate how 

pressing the issue of driver distraction is. Hence, it is of the utmost importance to have 

reliable tools to detect the potential for distraction that an in-vehicle device has before it 

is introduced in vehicles. 

The facts outlined in the previous paragraphs are not too surprising, since 

driving itself is a fairly involving activity which requires a complex interaction between 

both mind and body. Given that every task involves reasoning (possible exceptions being 

those relying upon muscle memory), the emphasis here should mostly be on the mental 

activity. Each task has a set of expectations associated to it with respect to the quality of 
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the performance [9]. Often times it is the case that the expectations are not met despite 

the individual’s ability and motivation to perform the task according to expectations. 

These failures in performance indicate increased difficulty of the task and the individual’s 

inability to cope with that increase. This gives rise to the concept of increased cognitive 

load (or workload, which will be used interchangeably in this dissertation). A common 

definition of cognitive load is the amount of demand which is imposed on an operator’s 

limited mental resources as a result of engagement in a task [10;11]. If we apply this 

definition to the driving domain it implies that by introducing side tasks drivers have to 

share their cognitive capacity between driving and side tasks. This may draw attention 

away from driving, which can lead to accidents.  

There exist various measures which reflect changes in cognitive load and can 

be divided into three general groups: performance-based (usually driving performance 

measures in the automotive context), physiological and subjective. Each of these groups 

has a wide variety of measures that are used for estimating the influences of various in-

vehicle devices on cognitive load, but some of the more popular ones are as follows: 

1. driving performance measures [12-25]: lane position, longitudinal and lateral 

velocity, steering wheel angle, following distance, acceleration, etc., 

2. physiological measures [12;15;23;24;26-34]: percent time drivers spent looking at 

the road ahead, changes in gaze location, heart rate, heart rate variability, skin 

conductance, pupil diameter, respiration, etc., 

3. subjective measures [12-14;23;24;27;28;35]: post experiment questionnaires and 

rating scales for assessing usability and the level of distraction. 
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A plethora of studies show that none of the above measures is a panacea. As Wickens 

[10] points out, we need multiple measures converging in the same direction in order to 

avoid circular arguments, such as “a task interferes more because of its higher resource 

demand, and its resource demand is inferred to be higher because of its greater 

interference.” Furthermore, depending on the experimental conditions, different measures 

may show different sensitivity. Since many of the above measures were used in the 

studies presented in this dissertation, a more detailed explanation of their relationship 

with cognitive load will be provided in Section 2.2. 

A common approach to analyzing the influence of an in-vehicle device or 

interface on driving is to conduct experiments in which participants perform a test drive 

once with and once without the interface in question (of course, this approach is readily 

extended to a larger number of experimental conditions). During the experiment various 

performance measures are collected, such as lane position, steering wheel angle, distance 

(gap) behind a lead vehicle, and so on. Those measures are then post processed to obtain 

certain “average-based” measures, such as variances or standard deviations (SD). In 

general, an increased variance (or SD) of these collected performance measures indicates 

worse driving performance. Strictly speaking, average values (means) of the above 

variables can be calculated as well, however, they are often not informative enough. 

Namely, one can drive close to the edges of the lane throughout the experiment without 

any negative consequences. What is more informative to look at is how much the position 

in the lane varies, since it may indicate driver’s higher expanded effort to perform well.  

Post-processing calculations of the performance measures usually follow one 

of two approaches. In one approach, researchers collect values of a desired performance 
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measure over long stretches of road (i.e. an entire experimental run). Variance (or SD) is 

then calculated based on all collected data points. A good example may be driving on a 

straight portion of the road, while continuously interacting with an in-vehicle device [25]. 

In another approach, the experiment is first divided into multiple segments and the 

variance (or SD) of a desired performance measure is calculated for each segment 

individually. Finally, an average of those variances is calculated over all available road 

segments, possibly weighing each segment’s contribution to the average based on the 

segment length or the time it took to cover the segment. Driving in a city environment 

with many turns is a good example for segmentation, since the intersections represent 

natural boundaries between individual streets [23;36]. Whichever approach is selected by 

the researcher, the same approach is used for each participant and each experimental 

condition (in-vehicle interface or device on test). Finally, the extracted measures are 

grouped for each experimental condition separately and analyzed using statistical 

methods (such as ANOVA and t-test) in order to establish if there are statistically 

significant differences between the groups. If the differences prove to be significant, it is 

an indication that the two conditions are not the same and the difference is caused by the 

experimental condition, given there are no other differences between the two test drives. 

1.1 Problem 

1.1.1 Example Studies Reporting High Sensitivity of 

Average-based Measures 

The above procedure has proven itself very effective for detecting changes in 

driving performance caused by ongoing manual-visual interactions. For example, 
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Salvucci and colleagues [18] examined the impact of MP3 player interactions on driving 

performance. Specifically, they collected two dependent variables: lateral position 

deviation (computed as the root-mean-squared error between the center of the vehicle and 

the center of the lane) and average vehicle speed change. The experimental conditions 

consisted of normal driving without any interactions with the device (baseline) and three 

interaction types: selecting and playing songs, podcasts and videos. The experiment was 

conducted in a simulated highway environment with one lead and one trailing vehicle. 

Except for playing tasks in case of lateral deviation, both selection and playing tasks 

significantly impacted each of the two driving performance measures. The authors’ 

overall conclusion was that the tasks that are visually intensive are likely to have 

detrimental effects on driving, since visual modality is the resource that has to be shared 

between driving and the side task. Furthermore, we argue that the frequency of the 

interactions can also play an important role: more frequent interactions (such as with an 

MP3 player in this study) are likely to influence driving more. Conversely, if the 

interactions occur infrequently it is possible that their effects on driving may be missed as 

a result of averaging driving performance measures over time. This suggests that an 

interaction may still be unsafe, even if our analysis misses it. 

One of the most studied effects on driving performance is the one resulting 

from mobile-phone interactions. Those interactions usually consume considerable 

amount of time and, at least in the case of hand-held phones, require physical 

manipulation of the device itself. In both on-road and a driving simulator study Reed and 

Green [37] investigated the influence of periodically dialing phone numbers using a hand 

held mobile-phone. Their results demonstrated highly significant effects of the phone task 
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compared to unencumbered driving on lane-keeping performance (expressed through 

standard deviation of lane position and steering wheel angle, steering reversal frequency 

and average lateral speed) under both simulated and on-road conditions. 

In one of our early studies [25] (“Interacting with Mobile Radios”), we 

compared the influence of two interface modalities on driving performance while 

interacting with police radios. We chose to examine radio interaction for two reasons. 

First, the radio is one of the most frequently used devices in the police cruiser. Second, 

interacting with the radio requires taking one’s hand off the wheel and eyes off the road, 

both of which make crashes more likely. Since police radios have hundreds of channels, 

they are organized into logical groups called zones. Reaching a particular channel 

requires first selecting the correct zone and then the desired channel. State-of-the-art 

police radios require officers to use their hands to change zones and channels, which they 

do by operating hardware buttons on the faceplate of the radio. They also need to look at 

a display on the faceplate to verify that the correct zone and channel were selected.  

Our hypothesis was that interacting with the police radio using a speech user 

interface (SUI) provided by the Project54 system would introduce a much smaller 

degradation of driving performance than using an interface that requires manual 

interaction. Project54 [38] is a software based package that integrates off-the-shelf 

electronic devices commonly used in police cruisers and enables an officer to control 

these devices using voice commands. In our driving simulator-based experiment the 

primary task was driving while following a lead vehicle at a constant speed of 55 MPH 

and maintaining a constant distance (gap) behind it. The experiment was performed on a 

straight, three-lane highway road with light traffic in daylight. The secondary task 
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consisted of changing channels and zones on a police radio and was performed both using 

the hardware controls installed on the radio faceplate (manual interaction) and using the 

Project54 SUI (spoken interaction). The experimental setup is depicted in Figure 1.1. In 

the case of manual interaction, participants used the buttons (zone up/down and channel 

up/down) and the display on the radio control head. In the case of spoken interaction, 

participants issued commands to the SUI specifying the desired zone and channel within 

that zone. For this purpose the participants used a push-to-talk button (PTT) mounted on 

the steering wheel that had to be pressed while issuing a command. The experimenter 

prompted participants to change zones and channels verbally providing the zone and 

channel names. 

 

Figure 1.1 Participant manually adjusting channels on the radio inside the simulator. 

We estimated driving performance by calculating variances of three dependent 

variables: velocity, lane position and steering wheel angle. Variances were calculated for 

the two interaction conditions (manual and spoken interaction) as well as for the baseline 

condition when the participants were just driving without any distractions. 
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We found no statistically significant difference between variances for data 

collected under the baseline conditions and during spoken interactions. However, there 

was a highly significant effect of the task condition (manual vs. SUI) on the variability of 

all dependent variables: velocity (p=0.00035), car lane position (p<0.0001), and steering 

wheel angle (p<0.0001). Box-plots of variances of all dependent variables for all 

participants and both task conditions (manual and SUI) are shown in Figure 1.2. 

One explanation for the above results is that the manual interaction with the 

police radio required releasing the steering wheel and at the same time looking away 

from the road (which can be clearly seen in Figure 1.1), and this had a detrimental effect 

on driving performance. In this experiment we did not collect eye-tracker data, which 

prevents us from precisely quantifying the amount of visual distraction involved with 

interactions. Nevertheless, we can qualitatively say that the visual attention to the road 

was higher in case of SUI interaction. 

 

Figure 1.2 Box plots of variances for lane position, steering wheel angle and velocity. 

For most participants changing channels manually resulted in drastic changes 

in driving performance between the baseline and the manual interaction task condition 

that could be observed even by just plotting the time graphs for the dependent variables. 

As an example, raw lane position data, recorded for one of the participants, during the 
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manual (left graph) and speech (right graph) interaction experiment is depicted in Figure 

1.3. In both graphs the period until about 130 seconds represents the baseline driving 

without any interactions. In the case of manual interaction, the vertical dotted lines 

represent the instants in time when the participant pressed a button on the radio control 

head. In the case of speech interaction, the dotted lines represent the beginnings of 

spoken interactions (issuing voice commands). By visually comparing these graphs we 

can say that the speech interaction introduced little if any additional variation of the lane 

position, while the manual interaction did. 

 

Figure 1.3 Comparison of lane position for manual (left) and speech interaction (right) 

for one example participant. 

The results obtained through the driving performance measures were also 

reflected in the subjective estimates of workload using the NASA-TLX questionnaire. All 

participants reported that they experienced a significantly higher workload (p=0.002) 

during manual interaction as is depicted in Figure 1.4. 
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Figure 1.4 Mean NASA-TLX workload score (error bars represent ±1 SD). 

In order to gain better understanding of the effects of speech user interface 

characteristics on driving performance, we conducted a follow up study [22] (“Speech 

Interface Accuracy and Driving Performance”). Namely, we examined the effects of 

three SUI characteristics on driving performance: speech recognition accuracy, PTT 

button usage and dialogue repair. Speech recognition accuracy was a within-subjects 

variable and it had two levels: high (89%) and low (49%). Both accuracies were fixed 

using the Wizard-of-Oz approach (we used prerecorded responses, rather than the actual 

speech recognizer). PTT button usage was also a within-subjects variable with two levels: 

PTT mounted on the center console and ambient recognition without the PTT button. 

Finally, dialogue repair was a between-subjects variable and it represented the system’s 

responses in case of wrong recognitions: for one group of participants the system uttered 

an incorrect command (misunderstanding), while for the other the system uttered 

“unrecognized” (no understanding).  

The main task was to follow a single lead vehicle on a two-lane, curvy, rural 

road in daylight with no ambient traffic. Since the simulated road contained many curvy 

sections, it forced participants to actively pay attention to the driving task, instead of just 

focusing on the spoken task. The secondary task (spoken task) included changing 
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channels and initiating message transmissions on a police radio. The participants were 

instructed verbally by the system where (which Zone and which Channel) to retransmit 

each of the messages. Thus, a participant would first choose a desired zone (using the 

“Zone <name>” command), then choose a desired channel (using the “Channel <name>” 

command) and finally initiate retransmission (using the “Retransmit” command). 

Following participant’s commands, the system would verbally confirm the selection. 

After the system confirmed a successful retransmission, the participant had to return to 

the initial zone (“Zone A Adam”) and the initial channel (“Channel Troop A”). If a 

command was unsuccessfully recognized (which was judged by the system’s verbal 

confirmation), in case of misrecognitions, the participants would respond with “Cancel” 

and issue the correct command again; in case of non-recognitions, the participants would 

simply reissue the correct command. 

Three dependent variables were collected: lane position, steering wheel angle 

and velocity. Each variable was transformed using variances. A repeated-measures, 

multivariate analysis of variance (MANOVA) indicated a significant main effect of 

recognition accuracy on overall driving performance (p=0.001), but not of PTT or dialog 

repair. Furthermore, a significant interaction between recognition accuracy and PTT was 

observed (p=0.01).  

To follow up on the significant effects, we analyzed the effects on each driving 

performance measure individually using a univariate ANOVA. We found that the 

recognition accuracy significantly impacted steering wheel angle (p<0.001), but not lane 

position or velocity. This indicates that when the speech recognition accuracy was low, 

the participants invested more effort to keep the vehicle in the lane. Furthermore, we 
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discovered that there was a significant effect on lane position of the interaction between 

recognition accuracy and PTT usage (p<0.05). Namely, when the recognition accuracy 

was low and when the PTT button was used, lane position variance increased. 

Conversely, when the recognition accuracy was high, the usage of the PTT button did not 

affect lane position. No effects were found for steering wheel angle and velocity. Figure 

1.5 shows the mean steering wheel angle variance for two recognition accuracies (left 

graph) and mean lane position variance depending on the PTT usage (right graph). 

Eye-tracker data was not collected in this study. However, since the voice 

commands were used in each case, we can qualitatively say that the visual attention to the 

road ahead was high. Furthermore, based on the interaction types, we can qualitatively 

say that the cognitive load was higher in case of low recognition accuracy compared to 

high recognition accuracy. Even though the number of issued voice commands between 

the low and high recognition accuracy conditions was approximately the same, the fact 

that the low accuracy required reissuing voice commands made interactions more 

difficult and possibly increased participants’ frustration. This had a substantial influence 

on driving performance and was successfully detected by the average-based measures. 

 

Figure 1.5 Mean steering wheel angle (left) and lane position (right) variances. 
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1.1.2 Example Studies Reporting Low Sensitivity of 

Average-based Measures 

In the studies presented so far the effects of interactions were long lasting, so 

their influence on driving could be detected using average-based (mean, standard 

deviation, and variance) performance measures over time. However, the problem is that 

this approach may not be adequate in all cases. For example, a study by Ranney et al. 

[39] investigated the influence of various secondary tasks on driving accomplished using 

either a manual-visual or voice interface. Besides driving-only (no interactions), there 

were three secondary tasks in total: baseline (continuous phone dialing or radio tuning), 

simple (searching for a specified message and recoding a voice memo) and complex 

(same as the simple tasks with the addition of finding and dialing a phone number and 

retrieving information from an automated phone system). All tasks were performed on a 

test track while following a lead vehicle.  

Among others, the results indicate no difference between the two interfaces 

(manual-visual vs. voice) regarding following distance to the lead vehicle, no difference 

regarding the number of steering reversals per second and a significant difference 

regarding standard deviation of lane position. If we look at the influence of secondary 

task type, for all of the above variables, driving-only produced significantly smaller 

effects, while no differences were observed between other secondary tasks (baseline, 

simple and complex). This result was unexpected, since the complexity of the tasks was 

very different, which is corroborated by observed significant differences in task 

completion time. The lack of difference between the complex and the other tasks was 

especially intriguing, given the increased difficulty of the complex task reflected in the 
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number of procedural steps and memory burden. The authors suggest that this result may 

be due to drivers finding a temporary relief from the increased workload during the phone 

call connect time. This indicates that driving performance deteriorated while performing 

a task and then improved during the call connect time. However, since the average-based 

measures characterize each segment as a whole, it is impossible to isolate just the effects 

of interactions. All dependent variables were collected during two straight portions of the 

test track, each being 2 miles long. If we take into account that the lead vehicle’s average 

velocity was 40 MPH, it can be calculated that the duration of each segment was about 

180 seconds. Average task completion times for easy, baseline and complex interactions 

were 69.9, 117 and 148.3 seconds, respectively. If we consider these long completion 

times it is even more curious that no differences have been observed between interaction 

types. It may be the case that the average-based driving performance measures “smeared” 

the effects of individual interactions thus preventing us from seeing the changes in 

driving between these markedly different interaction types.  

Another good example where average-based measures may not work well is 

the interaction with a personal navigation device (PND). This kind of interaction is often 

not an ongoing activity: drivers might look at a PND map for several seconds, but do this 

infrequently. Additionally, not every glance at an in-vehicle display results in worse 

driving performance. In these cases averaged performance measures might not 

adequately capture the negative influence of the interaction on driving, since driving 

performance deterioration occurs for relatively short periods of time compared to the 

duration of the experiment or segment.  
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In a navigation study [40] (“The Effects of PNDs on Driving and Visual 

Attention”) we analyzed how driving performance and visual attention change as a result 

of three navigation alternatives: printed paper directions, standard map-based directions 

and voice-only directions. Printed paper directions served as a baseline. Even though 

PNDs are very common in vehicles nowadays, some drivers still use paper directions, 

which is why we decided to include them in this study. The participants were provided 

with printed directions similar to those that can be obtained from popular web services: 

map of the route and a list of turn-by-turn directions. This navigation required a manual-

visual interaction, since the participants had to handle the sheet of paper with their hands. 

Standard map-based directions (SPND) simulated commercially available PNDs and 

provided a map with a real-time location of the vehicle (green triangle in Figure 1.6) as 

well as verbal prompts for the upcoming turns. The map also contained an outline of the 

route to be traversed (solid red line in Figure 1.6). Spoken directions (voice-only) were 

included in the study in order to investigate whether the visual presentation of directions 

on standard PNDs negatively influences driving and visual attention. Therefore, we used 

the same spoken directions as with the SPND, except that the map was not visible.  

 

Figure 1.6 7” LCD screen simulating a map-based standard PND. 
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Figure 1.7 Experimental setup inside the simulator cabin. 

Figure 1.7 shows the equipment setup inside the simulator cabin. For this study 

we used an eye-tracker, which enabled us to precisely quantify the amount of visual 

attention the participants directed to the road ahead. In this figure we can also see the 

location of a 7” LCD screen which simulated standard PND directions. Unless a PND is 

already embedded in the center column, drivers typically mount PNDs on the windshield 

or on top of the dashboard. In this study we decided to place the LCD screen on top of the 

dashboard, since this location requires smaller gaze changes compared to a screen which 

is integrated into the dashboard. 

In our driving simulator-based experiment the main task was to navigate 

through a simulated environment using the above navigation devices. The simulated 

environment consisted of multiple road types; however, we decided to process the data 

from two-lane city roads with lane markings. This ensured that the characteristics of all 

selected road segments were the same. The path included multiple left and right turns, so 

we segmented the experiment such that each individual street was considered as a 

separate segment. The intersections were used as the natural boundaries between the 

segments. Furthermore, we excluded the data from the intersections, because the 

variances resulting from the turning maneuvers are much higher than the variances 
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encountered while driving on straight segments, which would likely mask any device 

effects. We collected multiple dependent variables for each segment: variances of lane 

position, steering wheel angle and velocity, average velocity and percent dwell time 

(PDT) on the outside world. Since the segments were of different lengths, we weighted 

the contribution of each segment to each driving performance dependent variable based 

on the ratio of the time each participant spent on that segment to the overall time spent on 

all segments together. 

By conducting one-way ANOVAs for each dependent variable we obtained 

significant main effects of navigation type on the following dependent variables: variance 

of lane position (F(2,20)=4.94, p<0.05), steering wheel angle variance (F(2,20)=4.67, 

p<0.05) and PDT on the outside world (F(2,20)=14.03, p<0.001). No significant effects 

were observed regarding the velocity variance or average velocity.  

Figure 1.8 shows the mean lane position variances (left) and mean steering 

wheel angle variances (right) for the three navigation aids. For both dependent variables, 

post-hoc pairwise comparisons indicated significant differences between paper directions 

(p<0.05) and both SPND and voice-only directions. No differences were observed 

between SPND and voice-only directions. The results obtained using the lane position 

variance indicate that when paper directions were used, participants were unable to 

control the position of the car with the same degree of accuracy as with the other 

navigation aids. Similarly, steering wheel angle variance indicates that participants 

invested a significantly higher effort on steering when paper directions were used. 
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Figure 1.8 Mean variances of lane position (left) and steering wheel angle (right). 

Figure 1.9 shows the average PDT on the outside world for the three 

navigation aids. Not surprisingly, participants spent the least amount of time looking at 

the forward road when they used the paper directions. This was corroborated through the 

post-hoc comparisons, which indicated that paper directions caused the smallest PDT, 

followed by SPND and voice-only navigation aids. All pairwise comparisons indicated 

statistically significant differences (p<0.05).  

 

Figure 1.9 PDT on the outside world. 

One explanation for these results is that the paper directions required 

manipulating a sheet of paper and on average caused longer glances (1.4 sec) compared 

to SPND (0.6 sec). This affected driving performance substantially, thus enabling us to 

see the influence on driving performance measures using the averaging approach. 
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Conversely, averaging did not uncover differences between SPND and voice-only PNDs, 

despite the significant difference (p<0.05) in visual attention between the two (88% vs. 

92%, respectively). However, the fact that we did not find any significant differences in 

driving performance does not mean that there is none – merely that, with our simple 

driving task, the null hypothesis that the driving performance when using standard PND 

directions is the same as that when using spoken directions only could not be rejected.  

Similar results were obtained in a follow-up study [23] (“Glancing at PNDs 

Can Affect Driving“) which was intended to investigate more closely the impacts on 

driving performance produced by standard PND and spoken directions only. The 

simulated scenario was more challenging than the previous one and it resembled a two-

lane city road, which was populated with realistic traffic, pedestrians and unexpected 

events (cars braking, pedestrians jaywalking, etc.). This substantially increased the level 

of realism, since now the participants actually had to pay close attention to the virtual 

world, specifically cars and people. Figure 1.10 shows how the simulated road looked 

like. It also shows one of the unexpected events that occurred during the experiment: a 

pedestrian emerging from behind a parked vehicle in front of the participant’s vehicle. 

 

Figure 1.10 Simulated two-lane city road with unexpected event. 
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We collected multiple dependent variables: variances of lane position, steering 

wheel angle and velocity, average velocity, number of collisions with other objects 

(pedestrians and cars) and PDT on the outside world. 

The navigation route included many streets that the participants were supposed 

to traverse. Similar to the previous study, we segmented the experiment using the 

intersections as the natural boundaries. In this experiment we focused on 13 segments for 

which we extracted all of our dependent variables. Each segment was 200 meters long 

and all had the same characteristics. Segments where unexpected events occurred were 

excluded from the analysis, since an unexpected event may require sudden breaking 

and/or steering wheel motion, which can impact driving performance significantly, thus 

making comparisons with other segments difficult.  

After performing a one-way ANOVA using PDT as the dependent variable, we 

found a significant main effect of the navigation type on visual attention (p<0.01). As 

expected, time spent looking at the outside world was significantly higher in case of 

spoken directions (96.9%) compared to SPND (90.4%). These results are in agreement 

with the ones obtained in the previous study. 

Figure 1.11 shows changes in PDT on the outside world (left) and PDT on 

SPND (right) based on the distance from the previous intersection. We can see that the 

participants were more likely to look at the PND right after making a turn. This can be 

explained by the drivers’ urge to confirm whether they made a correct turn as well as the 

need to observe the upcoming direction. Furthermore, participants were less likely to look 

at the PND as they approached the next intersection, which indicates that they were 

focusing more on becoming ready to make the upcoming turn. 
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Figure 1.11 Changes in PDT on the outside world (left) and SPND (right) based on 

distances from intersections. 

We found no significant differences between the navigation devices in any of 

the average-based driving performance measures, even though arguably large significant 

differences in visual attention were detected. Specifically, participants on average spent 

about 6.5% more time looking at the road ahead when using the spoken output-only PND 

– a difference of about 4 seconds for every minute of driving. The lack of the observed 

effects on driving agrees with the findings from the previous study and is equally 

surprising given the impacted visual attention.  

The results from these two navigation studies suggest that the glances directed 

towards the PND displays have short-lived, local influences which are easily lost in the 

averages. As we can see from the graphs displayed in Figure 1.11, visual attention to the 

road ahead varies widely depending on the car’s physical location within each street 

segment. It is likely that the negative influences of looking away from the road were 

localized in the areas of the segment where the drivers directed their visual attention 

away from the road the most. In this case, the largest difference in PDT directed to the 

road between spoken-only and standard PND occurred between 80 and 100 meters from 

the beginning of the segment and is equal to 12.31%. However, since the visual attention 
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through the rest of the segment was not impacted severely, it can be expected that the 

driving performance was satisfactory. Thus, in the process of averaging over the duration 

of the experiment, the predominantly satisfactory driving performance overwhelms 

possible short-term deteriorations. As a consequence, statistically significant differences 

between conditions that involve such interactions may not be established. Figure 1.11 

also indicates that the observed overall difference in visual attention (PDT) does not 

provide the complete picture about the way participants interact with in-vehicle devices.  

Nevertheless, just because the influence of in-car interactions does not show in 

statistical analyses of long periods, it does not mean that it should be neglected, 

especially if the nature of the interaction is such that it can be performed very often. This 

assertion is corroborated by a naturalistic study done by Klauer and colleagues [4] who 

obtained a correlation coefficient of 0.72 between the frequency of drivers’ involvement 

in inattention-related tasks and the frequency of being involved in inattention-related 

crashes and near-crashes. Furthermore, they calculated that the odds ratio of being 

involved in a crash or near-crash even for simple interactions (such as adjusting a radio, 

talking to a passenger, drinking, etc.) is 1.18, while for complex interactions (such as 

dialing a hand-held phone, operating a PDA, etc.) is 3.1. These are all very important 

implications that should be accounted for when analyzing in-vehicle interactions. We can 

also argue that human psychology is a factor that plays a very important role in driving 

environment. Driving is a forgettable activity, which means that the importance of 

previous incidents decays over time in drivers’ minds. Thus, it is possible that a driver 

may engage in the same activity again after a long enough time. Additionally, if the risk 
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of interactions is within the subjective threshold, the engagement may be continuous 

(good examples being a cell phone conversation or an MP3 player interaction). 

The averaging problem observed in the previous studies may sometimes occur 

with manual-visual interactions as well. Hosking et al. [34] conducted a driving simulator 

study which was intended to investigate the impacts of sending and retrieving text 

messages using a cell phone on driving performance and visual attention of young novice 

drivers. Retrieving was defined as opening and reading a text message, while sending 

was defined as writing a reply to a text message and sending it. The simulated 

environment consisted of a two lane city road with multiple critical events: stopping at a 

red light initiated at the predefined distance from the signal, three car following tasks 

where the driver had to maintain safe distance (gap) behind a lead vehicle, two lane 

changing tasks where the driver was changing lanes according to signs located at the side 

of the road, avoiding a pedestrian and avoiding an oncoming vehicle which was turning 

in front of the participant. Each of these tasks was completed under both text messaging 

(retrieving + sending) and non-text messaging conditions, where the latter was used as a 

control. Multiple dependent variables were collected: averages and standard deviations of 

lateral position and speed as well as the proportion of time spent not looking at the road 

(equivalent to PDT off road). 

Two sets of results were obtained depending on the way data was analyzed. In 

the first case, the data was aggregated across all events for the time periods 

corresponding to retrieving and sending text messages. The results indicated a 

significantly larger proportion of time not looking at the road (≈ 40%) in case of text 

messaging (retrieving + sending) compared to non-text messaging condition (≈ 10%). 
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However, no differences were revealed regarding averages and standard deviations of 

either lateral position or speed between the two conditions for both sending and retrieving 

time intervals. This was indeed unexpected given the large observed difference (≈ 30%) 

in the visual attention directed off-road. The results are somewhat different when each 

event is analyzed individually. Namely, standard deviation of lateral position was 

significantly higher during sending time intervals (compared to non-text conditions) for 

three out of eight events: avoiding a pedestrian, red light signal and the second car 

following event. However, no differences were observed during retrieving time intervals 

for any of the driving variables. The lack of difference between retrieving time intervals 

and non-text conditions is even more unexpected if we look at the subjective assessments, 

which indicate that 95% of participants reported that their driving performance declined 

when receiving messages. It is likely that in this study average-based measures were not 

sensitive enough to isolate the effects of cell-phone interactions from the effects caused 

by critical events.  

1.1.3 Problem Overview 

Figure 1.12 presents one specific example obtained from a driving simulator 

which illustrates the averaging problem visually. The upper graph shows the lane position 

signal divided into two regions: “interaction” region where the participant was interacting 

with an iPod and “just driving” region where the participant did not perform any side 

tasks. Both regions are about 20 seconds long. The lower graph shows where the driver’s 

visual attention was directed to over time: 1 indicates speedometer, 5 indicates looking at 

the road ahead and 8 indicates looking at the iPod. We can clearly see that the participant 

drifted towards the edge of the lane while looking at the iPod and then brought the car 
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back to the original location (about -0.2 meters) after returning the gaze back to the road. 

After performing the calculations, we can see that both regions have very similar average 

values (ݔҧூ௧௧  ൌ  െ0.09, ݔҧ௨௦௧ ௗ௩  ൌ  െ0.12) and standard deviations 

ூ௧௧ݏ)  ൌ ௨௦௧ ௗ௩ݏ ,0.032   ൌ  0.012). Even though this is a very simplified 

example, after performing a two sample t-test between the two regions of lane position, 

we obtained a p-value of 0.1631, which indicates that there is no difference between the 

two signals. However, we can clearly see that something actually did happen during the 

“interaction” region at about 388 seconds. Namely, the participant drifted for more than 

0.5 meters as a result of interacting with an iPod. This simple example demonstrates how 

the short lived, but nevertheless important events, may get “washed-away” in the 

averages. 

 

Figure 1.12 Problem illustration using a specific example. 
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Before concluding this section we will make a simple thought experiment in 

order to shed light on the above problem from a real-life perspective. Imagine a situation 

where a driver is using a PND to navigate on an unfamiliar road. The PND informs a 

driver to make a right turn in 0.1 miles. However, there are multiple right turns in close 

proximity and the driver decides to glance at the PND in order to decide which one to 

take. While looking at the PND, the driver drifts towards the sidewalk. After returning 

the gaze to the road the driver notices that the car is very close to a pedestrian standing at 

the curb, so she executes a correction maneuver to re-center the car in the lane. The rest 

of the trip goes without any incidents and the driver arrives successfully at the 

destination. If we look at the above drive from a high-level perspective, it was a 

successful one, since no collisions occurred. Similarly, if we look at some more specific 

descriptors of driving performance, such as the average values or variances of lane 

position and steering wheel angle, it is likely that no differences will be detected, 

compared to a similar drive without any incidents whatsoever. The reason for this is that 

the duration of the incident was short-lived, thus producing a small impact on the long-

term average. While it is obvious that looking at the PND affected driving in this 

example, average-based driving performance measures do not capture the obviousness of 

this situation. Furthermore, incidents of this type happen fairly infrequently.  

The studies presented in this section sample the space of in-vehicle interactions 

fairly well, from manual-visual and spoken interactions to purely visual interactions. 

Based on these results we can conclude that there are three main aspects of the problem: 

1. As was demonstrated through the previous studies we are often unable to observe 

changes in cognitive load through differences in average-based driving 
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performance measures, such as lane position and steering wheel angle, even 

though differences may exist in visual attention and/or subjective estimates. 

Nevertheless, localized changes in performance measures may still exist, which 

indicate an effect of side task engagement, as was the case in Figure 1.12. There 

are three main effects that may contribute to missing localized changes: 

observation intervals are significantly longer than the duration of the localized 

change, localized changes occur infrequently and non-interaction related changes 

in driving performance may mask relevant changes coming from in-vehicle 

interactions. Therefore, a performance measure which would be able to account 

for such cases is currently not available.  

2. The second aspect of the problem is the inability to demonstrate changes in 

cognitive load from multiple sources. Namely, in our navigation studies we 

observed highly significant differences in visual attention to the forward road. 

This indicates changes in cognitive load. However, this way we possess only a 

single evidence pointing to that conclusion, which can then lead to a circular 

argument: visual attention to the road is low thus cognitive load is high, and 

cognitive load is high because visual attention to the road is low. A much stronger 

argument could be made if we would possess an additional measure suggesting 

the same conclusion.  

3. Finally, a coarse measure, such as the number of collisions, may be useful in 

characterizing the overall risk of using a particular device. However, collisions 

occur very rarely. Thus, a finer measure is required in order to facilitate the design 

process.  
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1.2 Goals 

Motivated by the above problem, we can state that the goals of this dissertation 

are as follows: 

1. (G1) Introduce a cumulative measure of a secondary task engagement on 

cognitive load. This measure should tell us how cognitive load is influenced over 

the course of performing the secondary task. It is understood that cognitive load is 

not constant. Rather, during periods of engagement in the secondary task 

cognitive load is increased. When there is no engagement in the secondary task, 

cognitive load is reduced. Our goal is to create a single measure that reflects both 

the impact of the periodic engagements in the secondary task (e.g. a driver 

glancing off the road from time to time, in order to look at the map of an in-

vehicle navigation device) and the frequency at which this activity happens in 

order to accomplish the secondary task (e.g. to navigate from point A to point B). 

Such a measure would provide more sensitivity to cognitive load changes 

compared to standard average-based driving performance measures. We also 

require this measure to allow ranking of the results obtained for different types of 

secondary task engagement, which can then be used to compare different designs. 

2. (G2) Introduce an instance-based measure of a secondary task engagement on 

cognitive load. This measure should tell us how cognitive load is influenced, on 

average, by an instance of engagement in the activity (e.g. how does one glance at 

the map influence cognitive load, on average). This approach complements the 

cumulative findings by allowing low level insight into individual engagements. 

Similar to the first goal, we also expect this measure to allow ranking of the 
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observed results. This is very important, because it allows comparing the effects 

of different interaction types at the level of individual secondary task 

engagements. 

3. (G3) Provide explanation for the mechanisms underlying the cumulative and 

instance-based measures. Knowing the underlying mechanisms has two 

advantages. First, it allows us to propose explanations about why the results 

behave in the observed fashion. And second, it gives us the ability to foresee what 

the results may be in advance, which may be used to inform design decisions. For 

example, if we are given a choice between multiple interaction modalities with a 

particular device, the obtained mechanisms may help us in ranking these 

modalities with respect to their impact on driving and cognitive load.  

1.3 Hypotheses 

Based on the results obtained from the previous studies we can say that the 

average-based driving performance measures do not characterize the potential causes of 

the observed changes. In other words, they characterize the experiment (or the 

corresponding experimental segments) as a whole without regard to when an influence 

has occurred or what caused it. This exactly leads to the general problem we are 

addressing: localized changes may be missed in the averages. Therefore, we need a 

performance measure which would take into account not just the final manifestation of an 

in-vehicle interaction (such as the effects on lane position or steering wheel angle), but 

also the potential causes. This agrees with the requirements of the first two goals 

specified in the previous section.  
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Generalization 
Ideally, this measure should be sensitive to many different interaction types, 

such as haptic (based on the sense of touch), spoken (speech production and 

comprehension), olfactory (based on the sense of smell). As we will see later, our method 

has the potential to be readily extended to the above interaction types as well, which 

provides generalization. However, as a first step, we will constrain this research to the 

interfaces that rely primarily on visual and manual-visual interactions. We have to note 

here that this restriction is not a limiting factor, since visual and manual-visual 

interactions are two types most commonly used with in-vehicle interfaces [41]. 

Construct Validity 
Another important aspect that this measure should satisfy is construct validity. 

Construct validity refers to the ability of a specific tool to measure the construct of 

interest [42] ‒ in our case changes in cognitive load in general and driving performance 

in particular. As we will see in the following sections, three driving simulator studies will 

be proposed for testing our hypotheses. These studies will also be used to test construct 

validity by comparing the results obtained through our method with the results of 

measures known to be sensitive to cognitive load changes, specifically, average-based 

driving performance measures (variances of lane position and steering wheel angle), 

subjective estimates of cognitive load (NASA-TLX questionnaire) and physiological 

measures (average heart rate and skin conductance). This way we can test whether our 

method provides conclusions in the same direction as the “standardized” measures. If this 

proves to be the case, it will be an indication that construct validity is supported. 
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Proposed Hypotheses 
If a driver is actively paying attention to the road ahead, any observed changes 

in driving performance can be attributed to willful actions. However, while performing 

side tasks the driver is distracted from the primary task of driving and any observed 

changes are likely caused by the interactions with the side tasks. Thus, there are two 

variables of interest here: interaction variable (ߩ) which serves as an “initiator” and 

driving performance variable (ߠ) which reflects the outcomes of the interactions. To 

generalize the approach, both of these variables can be transformed using some 

appropriate functions, ݂ሺߩሻ and ݃ሺߠሻ. The purpose of the transformations is to filter the 

raw data in ߩ and ߠ variables in order to emphasize desired effects. We can use ݂ሺߩሻ to 

determine when/where the important influences occur and then use that information to 

extract the effects observed in ݃ሺߠሻ. The approach of extracting relevant information 

from ݃ሺߠሻ using the initiator sequence ݂ሺߩሻ can be defined as follows: ܮሺ݂ሺߩሻ, ݃ሺߠሻሻ. ܮ 

can be termed as the “extraction function” as it extracts changes in driving performance 

initiated by the interactions characterized by ݂ሺߩሻ. Based on these definitions, we can 

formulate the following hypotheses relating to the first two goals of this dissertation: 

• (H1) Initiator-based quantification of cumulative secondary task engagement. In 

this case ܮ uses an initiator sequence ݂ሺߩሻ which indicates where individual 

secondary task engagements occur and use those to calculate the overall effect on 

driving performance and cognitive load.  

• (H2) Initiator-based quantification of instances of secondary task engagement. 

This case is similar to the previous one in the sense that an initiator sequence 

݂ሺߩሻ is also used to detect secondary task engagements. However, ܮ should be 
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modified such that the result reflects the effects of individual instances of 

engagement. 

Both the first and the second goal require our proposed methods to allow 

ranking the results obtained for different types of secondary task engagement. Since the 

proposed cumulative and instance-based measures are based on the same underlying 

“extraction function” ܮ, we can expect that they will provide the results of the similar 

underlying nature. Therefore, we propose one common ranking procedure (“RP”) 

addressed by Hypothesis HRP: 

•  (HRP) Establishing significant differences between secondary task engagements. 

The results obtained for different types of secondary task engagement using the 

cumulative and instance-based measures can be compared statistically. If the 

differences prove to be significant, this information may be used for ranking the 

size of their effects. 

The way we proposed the above hypotheses we have separated the 

quantification (cumulative and instance-based) and the ranking parts of our first two 

goals. Therefore, when addressing those goals, we will consider the appropriate pairs of 

hypotheses in concert: for G1 we will use H1 + HRP, while for G2 we will use H2 + HRP. 

Finally, our last goal (G3) is addressed by Hypothesis H3 as follows: 

• (H3) Establishing significant predictors. By revealing the variables which 

contribute to the cumulative and instance-based results, we can propose 

explanations for the underlying mechanisms. 
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The following sections will give more insight into each of the proposed 

hypotheses. The discussion of the proposed approaches for testing the hypotheses will 

follow in Section 1.4 (pg. 42). 

1.3.1 Hypothesis H1 – Quantifying Cumulative Secondary 

Task Engagements 

The conclusions of our preliminary study [23] will help in defining the first 

hypothesis. Namely, according to the results obtained in this study the mathematical 

function of cross-correlation appears to be a good choice for function ܮ, at least 

regarding short, local influences of glances on PND devices (a detailed discussion of the 

cross-correlation method will be presented in Chapter 3). The study compared a standard, 

map-based PND with spoken-only directions (no visual feedback) regarding their impact 

on driving performance and visual attention, which, as we know, reflect changes in 

cognitive load. The main task involved driving in a city environment and following 

navigation directions issued by the two PNDs.  

As we had a chance to see in the introduction, the results demonstrated a 

significant difference between the two PNDs regarding visual attention to the road ahead 

(PDT was 96.9% for spoken-only and 90.4% for SPND). No difference was observed 

regarding lane position and steering wheel angle variances, which was surprising given 

the impacted visual attention. Since the localized influences of in-vehicle interactions 

may be missed in the averages, we expected that glances directed away from the road 

may introduce short-term changes in driving performance. In other words, after returning 

the gaze to the road, drivers may need to apply corrections in order to keep a steady 
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position in the lane. If this was indeed the case, we expected to see peaks in cross-

correlation functions calculated for two driving performance measures (specifically, lane 

position and steering wheel angle) following the return of the gaze to the road.  

A sequence of glances (consisting of objects a driver is looking at) was 

selected as the logical choice for ߩ, while lane position and steering wheel angle were 

used as ߠ (a separate ߠ for each driving measure was created). Raw values of ߩ and ߠ are 

not very informative, so we transformed those using ݂ and ݃ functions as well. Sequence 

 consists of discrete, nominal values which indicate the objects the glance is directed to ߩ

over time. These values can be used to produce a sequence which aggregates all glances 

directed off road: cabin, PND, speedometer, etc. Function ݂ accomplishes that by 

transforming ߩ into instantaneous PDT (IPDT) on the outside world. The IPDT was 

calculated at a 10 Hz rate by calculating a separate PDT for each consecutive 100 ms 

window of eye tracker data. Since the eye tracker data was recorded at 60 Hz, we 

calculated instantaneous PDTs using six eye tracker data samples at a time. Finally, the 

IPDT was transformed such that a value of 0 represented 100% IPDT (attention fully on 

the outside world), while a value of 1 represented 0% IPDT (attention directed away from 

the road).  

Function ݃ was intended to capture localized changes in driving performance 

variables resulting from glances directed off-road. It was implemented by calculating 

short-term, running variances of lane position and steering wheel angle calculated at a 10 

Hz rate for 1 second long windows (i.e., for 10 samples of the given driving performance 

measure at a time). The choice of 1 second long windows reflects our expectation that the 

corrections to lane position on straight roads, resulting from relatively large changes in 
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the steering wheel angle, will take less than 1 second. After calculating the variance for 

each window, the window is moved by one sample and then the next variance is 

calculated. Since the sampling frequency is 10 Hz, this amounts to a 90% overlap 

between the windows. The result of each variance calculation is written at the location of 

the sample which represents the beginning of each corresponding window.  

Finally, ݂ሺߩሻ and ݃ሺߠሻ sequences were cross-correlated. Cross-correlation is 

capable of detecting similarities between two sequences, which can be related to each 

other either causally or indirectly (through known and unknown mechanisms). In this 

particular case, similarities are expressed through the glances directed off-road (݂ሺߩሻ), 

which are resulting in higher variances in driving performance measures (݃ሺߠሻ). Figure 

1.13 shows two cross-correlation functions, one for each driving performance measure: 

lane position (ܴ, left graph) and steering wheel angle (ܴ௦௪, right graph). The blue and 

green lines represent cross-correlation functions obtained for standard and spoken-only 

PND, respectively. The brown dash-dot lines in both graphs represent the significance 

level of 0.05, which indicates statistical significance of any peaks larger than this level. 

Figure 1.13 Cross-correlation results comparing standard and spoken-only PND as 

obtained using initial cross-correlation method. 
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We can see that there is a highly significant prominent peak in case of steering 

wheel angle cross-correlation function for SPND at the lag of about 0.8 seconds. This lag 

indicates that an increase in the steering wheel angle variance follows reduced attention 

to the outside world. The peak also exists for lane position cross-correlation function for 

SPND at 0.8 seconds; however, it is just below the significance level of 0.05. It is 

possible that this lack of significance is due to a relatively small number of participants 

(8) who participated in this study. Nevertheless, this peak indicates an existing trend 

towards the largest changes in lane position occurring right after returning the gaze to the 

road. These results suggest that our expectation is clearly supported in case of steering 

wheel angle, while a trend can be seen in case of lane position. We can also see that there 

are no significant peaks in case of spoken-only PND. This indicates that participants 

managed to maintain good control of the vehicle despite occasional glances directed 

towards the speedometer, dashboard or steering wheel. We also have to notice the large 

difference between the general levels of the cross-correlation functions obtained for the 

standard and spoken-only PND. This indicates that SPND introduced higher overall 

impact on driving compared to spoken-only PND, which can be associated with higher 

cognitive load. 

Based on these results we can say that cross-correlation appears to be a 

promising choice for function ܮ in hypothesis H1 and may be used to provide a 

cumulative measure of a secondary task engagement on cognitive load. Nevertheless, it 

has to be tested under more experimental conditions in order to confirm its usefulness. 

Furthermore, the previous choice of functions ݂ and ݃ was not ideal, since it resulted in 

the following difficulties: 
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a) The previous method required involved windowing in order to calculate running 

variances for the driving performance measures. Thus, the result depends on the 

window duration and the overlap between the windows. Additionally, the 

direction of the window (whether the window should be applied to the right or to 

the left from the current location) and therefore the location of the result depend 

on the windowing. This all causes data smearing. Similar problem exists with the 

windowing employed for obtaining IPDT from the eye-tracker data. An 

improvement to this procedure should be devised. 

b) As a consequence of using variances, the units of the results are in 

[meters2/sample] for lane position and [degrees2/sample] for steering wheel angle, 

which are difficult to comprehend practically. 

c) Due to the definition of the cross-correlation formula, the result may be skewed 

towards the long glances, since they contribute more to the overall cross-

correlation result. Also, if a glance is observed as a whole, it is unclear which part 

of the glance is the optimal reference point from which we can measure potential 

changes in driving performance measures. Therefore, a specific reference point is 

necessary to make the approach truly initiator-based as indicated in hypothesis 

H1.  

In order to address these issues and by taking into account the results obtained 

from this study, we hypothesize (H1) that the following choices for ܮ, ݂ and ݃ will be 

able to satisfy the quantification part of goal G1: 

a) ܮ should be based on the mathematical function of cross-correlation.  
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b) ݂ should transform the glance sequence ߩ into a sequence of zeros and ones, where 

ones represent the instants when the driver returns the gaze towards the road. This 

way edges of the glances represent specific reference points from which we can 

measure changes in driving performance. This goes along well with our assertion 

that glances contribute to changes in driving performance. 

c) ݃ should calculate the absolute first difference of the provided driving performance 

measure (ߠ), specifically lane position and steering wheel angle. This results in the 

highest possible resolution without smearing the data, since no windowing is 

required (strictly speaking, the duration of the window is only two consecutive 

samples). This transformation is similar to variance in a sense that it resembles the 

overall change in the data without regard to the direction of the change. The reason 

for taking the absolute value is that moving too far to either side of the lane of 

travel produces an equally hazardous situation: vehicles coming from the opposite 

direction on the left and edge of the road on the right. Similar logic applies to 

steering wheel angle: pronounced changes to either side indicate potential 

corrections after returning the gaze back to the road. 

1.3.2 Hypothesis H2 – Quantifying Instances of Secondary 

Task Engagements 

The second hypothesis is based on the same main assumption as with H1: 

glances directed away from the road may produce localized changes in driving 

performance after returning the gaze back to the road (potential corrective actions). 

However, in this case we are interested in characterizing the changes in cognitive load 
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resulting from individual interactions (engagements in secondary task). The way the 

cross-correlation function is defined in H1 provides us with the cumulative effect on 

cognitive load coming from all engagements observed together. Thus, we hypothesize 

(H2) that the quantification part of G2 can be addressed by introducing a normalization 

factor to the initiator-based function ܮ. Since in our case (although a generalization is 

possible to other interaction types and even other domains besides automotive) we 

consider an individual glance directed off-road as one instance of secondary task 

engagement, the normalization should be performed with respect to the total number of 

glances that occurred in the current experimental epoch (segment). Thus, if ܮ is the cross-

correlation function, we can define a new extraction function to be ܮᇱ ൌ /ܮ ܰ௦. 

1.3.3 Hypothesis HRP  – Ranking the Effects of Secondary 

Task Engagements 

Besides quantifying the effects of secondary task engagements, our first two 

goals are also concerned with ranking the effects of multiple task difficulty levels tested 

under common experimental conditions. One example would be to make a distinction 

among several interaction alternatives with a personal navigation device or an MP3 

player. We hypothesize (HRP) that the cumulative and instance-based measures based on 

our cross-correlation method will be able to achieve this goal. Namely, we propose two 

approaches: magnitudes of the most prominent peaks and areas below the cross-

correlation functions. The results obtained for different experimental conditions using 

these approaches can then be compared statistically. If the significant differences are 
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observed, we can perform the ranking of the experimental conditions regarding their 

impact on driving and cognitive load.  

1.3.4 Hypothesis H3 – Analyzing Underlying Mechanisms 

Our last goal (G3) is to propose an explanation for the mechanisms underlying 

the cumulative and instance-based measures. We have to note here that our goal is not to 

obtain a universal model which could be applied to any experimental condition or to 

demonstrate causal relationship; rather, we intend to reveal a set of variables (in other 

words predictors) that contribute significantly to the observed results and to demonstrate 

the predictive ability of our measures.  

Both cumulative and instance-based measures are based on the cross-

correlation function. In our case the cross-correlation function is applied between the 

glance sequence and the performance sequence. Therefore, we have to take into 

consideration various variables that can describe those sequences well. We hypothesize 

(H3) that the following variables may have an important influence on the observed 

results: PDT spent looking away from the road, number of glances, average glance 

duration and average amount of change in lane position, vehicle heading and steering 

wheel angle.  
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1.4 Testing Hypotheses 

1.4.1 Testing H1 and H2 – Cumulative and Instance-based 

Quantifications of Secondary Task Engagements 

Hypotheses H1 and H2 propose using the cross-correlation function in order to 

provide a measure capable of estimating cumulative and instance-based effects of 

secondary-task engagements on cognitive load, respectively.  

Since both hypotheses are based on the same underlying assumptions, the 

testing can be performed in a similar fashion and they will be considered together. The 

method is based on the proposed ܮ, ݂ and ݃ functions and the detailed descriptions of the 

approach are provided in Chapter 3. For the purpose of testing H1 and H2, we propose to 

conduct a driving simulator experiment which will employ predominantly visual 

interactions (in the rest of this dissertation, we will refer to this study as “Exploring 

Augmented Reality Navigation Aids”). Based on the previous experience, interactions 

which are predominantly visual tend to produce localized effects on driving. These 

effects may be missed by the average-based measures, but are expected to be successfully 

detected by our cumulative and instance-based measures.  

The experiment will involve driving while interacting with three different 

personal navigation devices. This condition is often found in normal driving, which 

ensures that the task will not appear artificial to participants. In order to be able to 

observe how the participants use those navigation devices under the conditions that are 

close to real life, we intend to implement a realistic (although simulated) city 

environment. Similar to the previous study [23], we expect to observe a relationship 
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between glances directed off-road and the changes in driving performance measures, 

specifically lane position and steering wheel angle. The main idea behind this assumption 

is that drivers need to continuously control the position of the car in the lane. Hence, if a 

driver is not looking at the road, the controlling error may accumulate, which would 

require applying a correction in the car position after the gaze returns to the road. The 

proposed experiment will involve multiple experimental conditions (or levels of 

engagement with the secondary task). Thus, it will provide a fairly diversified data 

corpus. We expect that both the cumulative and the instance-based measures will be able 

to detect the effects on driving and cognitive load of the three navigation aids through 

statistically significant peaks in cross-correlation functions. 

As indicated in Section 1.3, our ultimate aim is to make this method applicable 

to any interaction type. While we do not expect that this dissertation will be able to 

provide such vast generalization, we are taking one additional step in that direction by 

testing the method under yet another circumstance: that of manual-visual interaction, 

which expands from the previous visual-only. For this purpose, we propose to test 

hypotheses H1 and H2 in a driving simulator experiment which examines manual-visual 

interactions with a popular in-vehicle device: an iPod (we will refer to this study as 

“Highway Driving and iPod Interactions”). The interactions will involve three distinct 

levels of difficulty and will be performed while driving on a straight highway road. 

Similar to the study proposed above, we expect that both cumulative and instance-based 

measures will detect the effects of interactions with the iPod demonstrated by the 

significant cross-correlation peaks.  
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1.4.2 Testing HRP – Ranking the Effects of Secondary Task 

Engagements 

Hypothesis HRP proposes a way for testing differences between the 

experimental conditions based on the results obtained using the methods proposed in 

hypotheses H1 and H2. If the significant differences are confirmed, we can perform 

ranking of the experimental conditions and compare their relative sizes of the effects.  

For the purpose of testing HRP we will employ the same studies proposed for 

testing hypotheses H1 and H2. Both of these studies involve several difficulty levels, 

which make it advantageous for testing HRP. We propose the following procedure. First, 

we will calculate the cumulative and instance-based measures for each type of secondary 

task engagement. Since our method provides results in the form of functions, as opposed 

to individual values in case of average-based measures, we cannot directly apply 

statistical tests to compare the results obtained for different experimental conditions. In 

other words, we have to characterize our cross-correlation results in a certain way such 

that they can be acceptable for statistical analysis. We propose two approaches for 

solving this problem. In the first approach, we can extract the magnitudes of the most 

prominent cross-correlation peaks for each experimental condition, which tells us how 

large the influence is at a particular lag. In the second approach we can calculate the areas 

below the cross-correlation curves for a range of lags, which tells us how large the effect 

is over a wider interval of time after the occurrence of the event (initiator) of interest (in 

our case, returning the gaze to the road). Once we have the data extracted using the two 

approaches, we will conduct comparisons to examine whether statistically significant 

differences exist in the observed results between different types of task engagements. 



 

45 
 

Finally, conditional on the existence of the above significant differences, we will rank the 

effects of different secondary task engagements. This approach will be applied to both 

studies. The technical details of the approach itself as well as the obtained results are 

provided in Chapter 3. 

1.4.3 Testing H3 – Analyzing Underlying Mechanisms 

Hypothesis H3 proposes to analyze a set of variables which contribute to the 

cumulative and instance-based measures proposed in hypotheses H1 and H2. If proved 

significant, these variables will provide insight into the underlying mechanisms. 

We propose to test this hypothesis through two controlled “reference” 

experiments that incorporate task-oriented interactions. Both experiments will be 

performed with an iPod under different driving and interaction conditions. In the first 

case we will use the same iPod study as in Chapter 3 (“Highway Driving and iPod 

Interactions”), where driving will be performed on a straight highway road with light 

traffic. In the second case the simulated environment will resemble a busy, straight city 

road (we will refer to this study as “City Driving and iPod Interactions”). In other words, 

the secondary task engagement will be exactly the same between the two studies; the only 

characteristic that will change is the driving environment. We also plan to include a lead 

vehicle in both studies, which will provide a uniform driving reference for all 

participants. The controlled conditions in these experiments will enable us to create 

multiple regression models in order to determine which of the variables proposed in 

hypothesis H3 have a significant influence on the cross-correlation results. The complete 

details of the results of reference experiments and testing H3 will follow in Chapter 4. 
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1.5 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 outlines procedures and 

measures that researchers commonly employ for characterizing driving performance and 

cognitive load in the area of human-computer interaction (HCI) in vehicles. Special 

emphasis has been paid to the measures employed in various studies presented in this 

dissertation. Chapter 3 gives a detailed description of the cross-correlation method 

proposed in the introduction. The method is backed up by some specific examples and 

provides support for hypotheses H1, H2 and HRP. Chapter 4 proposes explanations and a 

proof-of-concept for the predictive ability of the cross-correlation results, which provides 

support for hypothesis H3. Concluding remarks and the proposed directions for future 

research are given in Chapter 5.  

Finally, interested reader is encouraged to read through the appendices as well, 

since they provide more technical and methodological details about the studies presented 

in this dissertation. Specifically, Appendix A gives a detailed explanation of the data 

synchronization procedure which was employed in all experiments. Appendix B provides 

details about the experimental apparatus, description of the NASA-TLX questionnaire 

and Institutional Review Board approval. Finally, Appendix C provides graphs which 

were used for testing the assumptions of multiple regression models created in Chapter 4. 
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CHAPTER 2 

BACKGROUND 

The problem of drivers getting distracted by in-vehicle devices is certainly not 

a new one. Ever since the first device with a significant potential for distraction has been 

introduced in vehicles, such as a car radio in the late 1920s, there have been divided 

opinions about the effects those devices may have on driving. This notion was 

summarized well by Nicholas Trott’s 1930s article in The New York Times: “A grave 

problem that developed in New Hampshire… now has all the motor-vehicle 

commissioners of the eastern states in a wax. It’s weather radios should be allowed on 

cars. Some states don’t want to permit them at all – say they distract the driver and 

disturb the peace…” 

Cars have changed significantly over the last 100 years. However, most of the 

changes occurred in the last 10 to 20 years and many are impacting the cabin. Namely, 

the number of in-vehicle services such as music selection, navigation, live traffic reports 

and social networking is increasing rapidly. There is a considerable demand for those 

services, which indicates that the secondary tasks are becoming ever more important to 

the drivers. This trend is not surprising given that 86% of American citizens spend on 

average about 25 minutes commuting to work [43]. This suggests that drivers will keep 
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interacting with in-vehicle devices for two reasons: they have the capability to and it 

makes their drives a more enjoyable activity. One important factor that fuels this trend is 

the original equipment manufacturers that deploy various devices in vehicles. However, 

as argued by Magladry and Bruce [44], the question is not whether we are capable of 

developing some functionality, but whether we are supposed to. Since new devices utilize 

various types of interactions, it is necessary to examine their influences on driving even 

before they find their way into vehicles. As Strayer and Lee suggest [45], if the new 

technologies are properly designed they can increase safety and enjoyment; however, a 

poor design can make them deadly. Thus, having reliable tools for estimating driver’s 

distraction is very important and is the topic of this research. 

2.1 Driver Distractions 

Driving a vehicle is a complex task which requires drivers’ full attention (both 

visual and mental) to be directed to the road ahead. According to Michon [46], driving 

relies on the processes at three hierarchical levels: strategic level (high level planning of 

the trip, such as trip goals and desired route), maneuvering level (recognizing current 

traffic situations and executing maneuvers, such as obstacle avoidance, turning, 

overtaking, etc.) and control level (low level operation of the vehicle through the 

available controls, such as steering wheel and throttle). Distractions can occur on any of 

these levels and they can result in performance decrements at other levels. Nevertheless, 

drivers very often engage in side activities while driving. As an example, it was estimated 

that about 9% of drivers were using either a hand-held or a hands-free cell-phone while 

driving in the US in 2009 at any given daylight moment [6].  
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In-vehicle activities can be divided in two broad groups: activities supporting 

the driving task (such as, looking at the speedometer, checking mirrors, using a PND for 

orientation) and activities supporting drivers’ non-driving related needs (such as, talking 

over the cell phone, checking email, staying in touch with friends over social networking 

websites). It can be argued that many of the non-driving related needs are “imposed” on 

drivers by the technological factors and societal norms [45], such as social networking. 

Whatever the reason behind using those types of devices while driving, they should be 

carefully analyzed with respect to their ability to distract drivers. The support for this 

claim comes from a NHTSA study [7] published in 2009 which indicates that 16% of all 

fatal crashes and 21% of all injury crashes involved driver distraction. Furthermore, 

during the 100-Car Naturalistic Study [47] where 241 drivers drove 100 instrumented 

vehicles for the period of 12 to 13 months, over 22% of all crashes and near-crashes were 

caused by drivers involved in secondary tasks.  

Driver distraction can be defined as any activity or process that draws away the 

driver’s attention and disturbs driving control [48]. As such, driver distraction comes in 

the following forms [49]: 

1. Physical distraction is the result of physically manipulating an object while 

driving. This kind of distraction requires removing (at least one) hand from the 

steering wheel in order to perform the manipulation. Good examples include 

adjusting a radio [25;50] and operating an MP3 player [18;26]. 

2. Visual distraction prevents a driver from scanning the surrounding environment 

properly and comes in three forms. The first form includes physical occlusion of 

the driver’s visual field by the obstacles present on the windshield. The second 
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form includes looking at various objects not directly related to driving, such as in-

vehicle infotainment systems (IVIS) [12;24] or navigation devices [20;23;36]. 

Finally, the third form is usually referred to as “looked, but failed to see” and 

results from drivers being unable to see a potential hazard even though their 

visual attention may be directed in the direction of the hazard [51]. 

3. Cognitive distraction is the result of directing the driver’s mind “off-road” to the 

extent that it negatively influences driving performance [21;52]. This kind of 

distraction is concerned with the mind being directed to an object of interest and 

may even be a contributing factor to the “looked, but failed to see” accidents [51]. 

4. Auditory distraction results when drivers focus their attention to different sounds 

either continuously or occasionally [14]. The most obvious example of auditory 

distraction is the hands-free cell phone conversation [53-55]. 

Even though distractions by stimuli external to the vehicle are also occurring 

(such as advertising [56], road-side events, people) we are focusing here on distractions 

caused by interactions with various in-vehicle devices while driving. Depending on the 

user interface design, there exist three basic interaction types: manual, visual and spoken. 

These three interaction types are orthogonal, which means that they are independent of 

each other in a sense that they employ different interaction modalities. All types result in 

cognitive distraction, since in each case it is necessary to mentally process the action; 

however, only manual interaction produces physical distraction as well. Pure manual 

interaction requires developing a muscle memory in order to interact with an object of 

interest. Some representative examples include activating direction lights, wipers or 

shifting gears. Visual interaction is established through the eye contact with an object of 
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interest, an example being glancing at a speedometer. Finally, spoken interaction requires 

verbal contact with a desired object, such as issuing commands to a voice recognition 

system or listening to navigation directions.  

In reality many in-car devices require combinations of the above basic 

interaction types, such as manual-visual, manual-spoken, manual-visual-spoken. Table 

2.1 gives an overview of the interaction combinations used in our preliminary studies 

introduced in Chapter 1 for the purpose of supporting the definition of the main problem 

investigated in this dissertation.  

Study 
number Study name Interaction type(s) used in the 

study 

1 Interacting with Mobile Radios manual-visual, spoken (speech 
production and comprehension) 

2 Speech Interface Accuracy and Driving 
Performance 

spoken (speech production and 
comprehension) 

3 The Effects of PNDs on Driving and 
Visual Attention 

manual-visual, visual-spoken 
(speech comprehension only), 
spoken (speech comprehension 

only) 

4 Glancing at PNDs Can Affect Driving 
visual-spoken (speech 

comprehension only), spoken 
(speech comprehension only) 

Table 2.1 Interaction types explored in four preliminary studies. 

As we can see from Table 2.1, different interaction types and their 

combinations have been used in these studies. Study 1 investigated interactions with 

mobile police radios using two alternatives: GUI and SUI. GUI required manual-visual 

(manually pressing buttons on the radio and observing the LCD display), while SUI 

required spoken interaction only (both issuing speech commands and comprehending 

speech recognition engine’s responses). Study 2 was focused on spoken interactions only, 

while studies 3 and 4 explored interactions with various PND alternatives, which can be 
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divided into: manual-visual (physically manipulating a sheet of paper with written 

navigation directions - study 3), visual-spoken (navigation information obtained visually 

by looking at the on-screen directions and verbally by listening to spoken prompts - 

studies 3 and 4) and spoken (navigation information obtained by listening to spoken-only 

prompts - studies 3 and 4).  

Since in-vehicle interactions often encompass a combination of multiple 

different distraction types, this makes it more challenging to estimate precisely how 

difficult a task is. The difficulty of a task is typically not directly observable, because the 

same task can be more difficult to some individuals than to others. This implies that the 

overall difficulty of the task depends highly on the interaction between the task and the 

operator [9]. This is especially emphasized when the operator is instructed to perform 

both the primary (i.e., driving) and the secondary task (i.e., interaction with an in-vehicle 

device) simultaneously. Namely, it can be expected that the operator is quite capable of 

performing each of these tasks individually with high success and relatively low (or at 

least acceptable) mental demand. However, when both tasks are introduced concurrently 

the interaction between those may cause an increase in difficulty that the driver is unable 

to cope with. In other words, it is likely that the overall difficulty of performing two tasks 

concurrently may be larger compared to the difficulties introduced by each task 

performed individually. This situation is best described with the concept of high 

cognitive load (or workload), which may result in deteriorated vehicle control. One of the 

most famous examples is driving and communicating on a hand-held phone, which can 

result in driving impairments as profound as those associated with drunk-driving [19]. A 

very nice summary of the inherent limitations that people have with respect to driving is 
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given by Rumar [57], who asserts that a driver is an “outdated human with stone-age 

characteristics and performance who is controlling a fast, heavy machine in an 

environment packed with unnatural, artificial signs and signals.” Having this in mind it is 

very important that the original equipment manufacturers focus their efforts in the early 

stage of device design towards reducing cognitive impairments that may occur as a result 

of using the device while driving. The next section will provide more details about 

cognitive load and the methodologies that can be used for detecting it. 

2.2 Cognitive Load 

Cognitive load is commonly defined as the relationship between mental 

resources which are required for accomplishing a given task and the resources which are 

available for that task [10]. Every activity involves a certain amount of cognitive load. 

The Yerkes-Dodson law [58] provides an empirical relationship between workload (or 

arousal) and the performance level on a given task. It is an inverted U-shape curve, which 

increases as the workload increases up to a point, after which starts to decrease. Figure 

2.1 illustrates this relationship.  

 

Figure 2.1 Inverted U-shape relationship between performance and workload (arousal). 
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On the one hand, if someone experiences workload that is too low for a long 

period of time, it may induce fatigue, boredom and reduced alertness and situation 

awareness [59], which leads to decreased performance. On the other hand, if the 

workload is too high (demand exceeds the capacity), one may feel overloaded, which 

again reduces performance. The relationship between performance and cognitive load is 

certainly a complex one, since different tasks require different levels of workload for 

optimal performance. 

Cognitive load is a multifaceted, multidimensional problem that is difficult to 

define [9]. As we had a chance to see in the previous section, it is tightly related to the 

task difficulty, which can be interpreted as the difference between the expected and the 

actual performance [9]. In the automotive domain the performance on the primary driving 

task is of the utmost importance and is assumed to be at its maximum if the driver’s 

attention (both visual and mental) is focused to the road ahead. However, by introducing 

side tasks the driver is forced to multitask [60;61], which results in divided cognitive 

resources between driving and side tasks. Since the available resources are limited [62], 

failures in achieving the expected levels of performance may occur on both sides (driving 

and side task), which can be attributed to high cognitive load.  

Over the years, researchers developed various models that attempt at 

explaining how the limited cognitive resources are allocated between concurrent tasks. 

Some early models include the single-bottleneck models [63;64] and single-resource 

model [65]. However, it became obvious that the time-sharing between tasks is more 

efficient if they employ different information processing structures than the common 

ones. This gave rise to the Wickens’ multiple-resources model.  



 

55 
 

According to the multiple resources model [10], one does not possess only a 

single information processing unit, but rather multiple separate resources that can be 

utilized simultaneously. There are four dimensions in the multiple resources model which 

affect the time-sharing performance: processing stages (perception, cognition, 

responding), perceptual modalities (visual, auditory), visual processing (focal, ambient) 

and processing codes (spatial, verbal). The model implies that the interference between 

two tasks will be higher if they require the same level of the same dimension (for 

example, two visual tasks), than if they require different levels of the same dimension 

(for example, one visual and one auditory task). The main strength of the multiple 

resources theory is that it can predict the kinds of tasks that can likely interfere with each 

other as well as the kinds of tasks that can be performed concurrently.  

Regarding cognitive load the theory is the most useful in the overload region 

(where no residual capacity remains), since it can predict how much the performance will 

suffer when the overload is reached. It should be noted that the theory has little relevance 

for characterizing single-task demand, since in that case there are no parallel tasks 

competing for the same resources. In the automotive domain, however, multiple 

resources theory fits very well, the reason being the high complexity of the driving task. 

As such, automobile driving may require resources at multiple levels of processing: 

perceptual (ambient and focal visual processing, needed to detect lane markers and road 

signs), cognitive (spatial processing, needed to determine the position of the vehicle in 

the lane), and response (spatial response, needed to control the steering wheel). Thus, by 

introducing side tasks it is likely that some of the resources will have to be shared 

between the two.  
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We can look at some of our preliminary studies in the light of multiple 

resources theory, since it may indicate the cases when the performance may be affected 

as a result of interacting with in-vehicle devices while driving. Table 2.2 gives an 

overview of the resources used in three example studies. The abbreviations used in the 

header of the table have the following meaning: V = Visual, A = Auditory, f = Focal, a = 

Ambient, s = Spatial, v = Verbal, C = Cognitive and R = Response. The check marks 

indicate whether a task depends on a given resource. 

Study Task 
Resources 

Perception Cognition Response
Vf Va As Av Cs Cv Rs Rv 

All Driving only D D   D  D  
Interacting with 
mobile radios 

SUI    D  D  D
GUI D    D  D  

Speech Interface 
Accuracy and 

Driving 
Performance 

PTT + low accuracy    D  D D D
PTT + high accuracy    D  D D D
No PTT + low acc.    D  D  D
No PTT + high acc.    D  D  D

The Effects of 
PNDs on Driving 

and Visual 
Attention 

Standard map-based 
PND D   D D D   

Voice-only PND    D  D   

Paper directions D    D  D  

Table 2.2 Resource allocation for three example studies. 

As mentioned before, operating a vehicle under unencumbered conditions 

requires multiple resources which are indicated in the first row of Table 2.2. Since all 

studies involved driving, these resources are common for each study. The following rows 

indicate the resources used for side tasks in each example study.  

The first study (“Interacting with mobile radios”) explored interactions with 

mobile police radios using two modalities: SUI which used voice commands and GUI 
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which used embedded hardware controls. In doing so, SUI relied on the following levels 

of processing: perceptual (auditory-verbal for sensing speech-recognition engine’s 

responses), cognitive (verbal processing for understanding and producing speech 

commands) and response (verbal response for uttering speech commands). Conversely, 

GUI relied on a different set of resources: perceptual (focal visual processing for sensing 

controls on the police radio), cognitive (spatial processing for determining which buttons 

to press) and response (spatial response for activating desired buttons). If we compare the 

resources used by the driving and GUI task we can see that there exists a complete 

overlap between the two. On the other hand, SUI uses entirely different levels of the three 

processing stages. This implies that the interference is likely between the driving and the 

GUI task, but not between the driving and the SUI task. Indeed, this assumption was 

confirmed by both average-based driving performance measures (variances of lane 

position, steering wheel angle and velocity) and subjective estimates of cognitive load 

(NASA-TLX questionnaire). 

The second study (“Speech Interface Accuracy and Driving Performance”) 

examined the effects of the following SUI characteristics on driving: speech recognition 

accuracy, PTT button usage and dialog repair. The following resources were common in 

all cases: perceptual (auditory-verbal for sensing speech-recognition engine’s responses), 

cognitive (verbal processing for understanding and producing voice commands) and 

response (verbal response for uttering speech commands). Additionally, the conditions 

which involved using the PTT button (PTT + low accuracy and PTT + high accuracy) 

also relied on spatial response for manually pressing the PTT. However, we can say that 

this action mostly relied on muscle memory, since the participants were trained to operate 
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the PTT without the need to look at it. If we compare the resources required by these 

secondary tasks with the ones required for driving, we can see that an overlap exists in 

spatial response for the conditions which involved using the PTT button. This suggests 

that the likelihood of interference with driving is higher in those conditions than in the 

“no-PTT” conditions. Our results support this assertion for lane position variance, which 

was significantly higher when the PTT button was used and speech recognition accuracy 

was low. We also found that the steering wheel angle variance was significantly affected 

by the recognition accuracy whether the PTT button was used or not.  

The third study (“The Effects of PNDs on Driving and Visual Attention”) 

explored three in-car navigation alternatives: standard map-based PND, voice-only PND 

and paper directions. Standard map-based PND (SPND) required the following resources: 

perceptual (focal visual processing for observing the map and auditory-verbal for 

detecting spoken directions) and cognitive (spatial and verbal processing for interpreting 

the position of the vehicle on the map and understanding spoken directions). Voice-only 

PND relied on the following resources: perceptual (auditory-verbal for detecting spoken 

directions) and cognitive (verbal processing for understanding spoken directions). 

Finally, paper directions required: perceptual (focal visual processing for observing 

written directions), cognitive (spatial processing for reading the directions) and response 

(spatial response for handing the sheet of paper). If we compare the resources used by the 

driving task with each of the above three tasks we can see that the largest overlap exists 

for paper directions and SPND. Since there is no overlap between driving and voice-only 

PND, we can consider it as a “baseline” condition for comparisons. Thus, we would 

expect the largest interference with the primary task in the case of paper directions, which 
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was detected using both the average-based driving performance measures and visual 

attention. The interference with driving could also be expected in case of standard map-

based PND, which was supported by visual attention but not driving performance 

measures. Given the significant impact on visual attention (p<0.05) when the SPND was 

used (PDT on the road ahead was 88% vs. 92% for voice-only PND) and the fact that 

driving is a predominantly visual activity, our conclusion in the introduction was that the 

average-based measures may not be sensitive enough to detect influences of individual 

glances towards the map-based PND.  

Even though the influences of gazing away from the road are sometimes not 

detected using averages (as was the case with the SPND in the study above and multiple 

studies presented in Chapter 1), it does not mean that they do not exist or should be 

ignored. This is especially important with well-designed in-vehicle devices that may even 

encourage drivers to interact with them more frequently while driving. As Lee and 

Strayer point out [45], this can lead to a usability paradox, which occurs when improved 

ease of use makes each individual interaction less distracting, but as a result of more 

frequent use the overall risk of using it increases. This problem can also be looked at 

from the perspective of the “Swiss cheese” model of incident occurrence [66], which 

postulates that accidents occur when all necessary adverse conditions line up thus 

allowing a negative consequence to occur. We argue that interacting with in-vehicle 

devices fits this analogy fairly well and can be explained as follows.  

Let us assume there are three layers in the model: glances directed away from 

the road (i.e., towards an LCD screen), changes in driving performance (i.e., swerving in 

the lane) and the presence of a hazardous object (i.e., a pedestrian or another vehicle). 
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The third layer can also represent the driving environment in general, such as good vs. 

inclement weather, day vs. night, etc. If a driver is paying sufficient attention to the 

forward road, controls the vehicle well and no hazardous objects are present on the road, 

the holes will not appear in the layers (at least not in the first two layers). The appearance 

of “holes” is an indication of unfavorable conditions.  

Regarding the first layer, the more often a driver looks away from the road, the 

larger the number of holes. Similarly, the longer the individual glances are, the larger the 

corresponding holes. This assumption matches the observation from the literature, which 

states that the aggregate risk of using a particular in-vehicle device is equal to its 

exposure, that is, the product of the duration of each use and the frequency of use [67].  

The holes in the second layer do not have to be aligned with the holes in the 

first layer (at least not all the time), which indicates the fact that not every glance directed 

away from the road will necessarily instigate worse driving performance. Additionally, 

glances that do result in worse driving do not necessarily have the same size of the effect, 

thus differently affecting the sizes of the holes.  

Finally, the holes in the third layer indicate how often (number of holes) and 

for how long (sizes of holes) the hazardous objects are present on the road. This layer is 

directly affected by the driving environment: it is more likely that the hazardous 

situations will occur on the busy city streets during a rush hour than on a free-flowing 

highway. Similarly, driving is much easier on a straight road, with no traffic and under 

good weather conditions, than under heavy traffic and torrential downpour [68].  

We can also argue that the probabilities of holes appearing in these three layers 

are going down with each successive layer: glances directed off-road are very likely to 
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happen, but only a portion of them will impact driving. Similarly, hazardous events occur 

rarely, so the probability of holes appearing in the third layer can be expected to be the 

lowest. Therefore, we can conclude that the overall probability of an accident occurrence 

is fairly low, but still higher than zero. The question is whether we can make this 

probability even smaller?  

The third layer predominantly depends on chance, since the appearance of 

hazardous objects or the environmental conditions cannot be controlled by the driver. 

However, the first two layers can. The situation in which the holes in the first two layers 

align can be termed as a “near-hit,” since the driving performance is affected by the 

glances directed off-road, but ultimately no collision occurs. The probability of this 

situation is certainly higher than the overall accident probability and should be made as 

low as possible. This is exactly the reason why it is necessary to have reliable tools which 

would detect negative impacts on driving within the first two layers. Multiple resources 

theory is certainly one useful qualitative tool which can detect interferences that may 

result in high cognitive load conditions. However, sensitive empirical tools are also 

necessary which would support its predictions. 

In general, cognitive load also depends on the context where the task is 

performed. In other words, the load at each resource depends on the complexity of the 

driving environment and is likely to be different from study to study. To cite an example 

by Wickens [10], visual/spatial resource demands are likely to be relatively high on dimly 

illuminated roads. However, they may be even higher if the road is curvy and the 

travelling speed is high.  
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The above effect of the driving environment may be visible from two studies 

proposed in Chapter 1 for the purpose of testing multiple hypotheses: “Highway Driving 

and iPod Interactions” and “City Driving and iPod Interactions.” In both cases the main 

task is driving, while the secondary task includes interactions with an iPod of varying 

levels of difficulty. The secondary tasks in both studies rely on the same resources: 

perceptual (focal visual processing for detecting buttons and scanning the LCD screen on 

the iPod), cognitive (spatial processing for determining which buttons to press and 

understanding the information presented on the LCD screen) and response (spatial 

response for pressing the buttons). If we compare these resources with the ones required 

by the driving task (see the first row in Table 2.2) we can conclude that the overlap is 

significant and that the interference (and thus increased cognitive load) with driving is 

likely. Based on this we expect that through these studies our cross-correlation method 

will be able to accomplish the following: a) detect both cumulative (supporting H1) and 

instance-based (supporting H2) changes in cognitive load resulting from the interference 

between the driving and secondary task, and b) allow ranking of the levels of secondary 

task engagement (supporting HRP). Furthermore, if the interference is also detected by the 

standard average-based driving performance measures, this will provide support for 

construct validity of our method. However, we also expect that the detected impacts will 

be different between the studies, because they employ different environment conditions: 

straight highway with light traffic in the one case and busy city road in the other. Thus, it 

is likely that the resource allocation (and thus cognitive load) may be higher in the latter 

study. As pointed out by Zhang et al. [30], the amount of distraction that the drivers are 

willing to sustain may be smaller under difficult conditions and larger under easy 
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conditions. Nevertheless, drivers very often allow the performance of the primary driving 

task to degrade [68]. 

Acknowledging that cognitive load is such a complex concept, it is unlikely 

that any single measure would be good enough for its characterization. Thus, researchers 

utilize a large number of measures that can be classified in three main categories [11]: 

performance-based (which can be divided into primary-task and secondary-task 

measures), physiological and subjective. The following sections will give a brief 

overview of these categories in the context of driving research. 

2.2.1 Performance-based Measures 

Performance-based measures assess workload by analyzing how well the 

operator performs a given task. These types of measures are very easy to comprehend, 

since they directly reflect the results of the operator’s efforts. There are two variants of 

the performance-based measures: primary and secondary task.  

Primary task measures estimate an operator’s capability to perform the actual 

task of interest. As the cognitive load increases, more resources are utilized which may 

eventually lead to a performance decrease. One disadvantage of this type of measure is 

that it is insensitive to workload changes in the situations where the operator can provide 

additional effort (has some spare cognitive capacity) to maintain the desired level of 

performance. Nevertheless, it is often used, especially when it is desired to distinguish 

different levels of cognitive load when the performance has already been affected (e.g., 

driving on a curvy road at low and high speeds) or to discriminate conditions of non-

overload and overload (e.g., driving on an empty road and in traffic jam).  
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Secondary task measures require the operator to perform two tasks in parallel: 

primary task and side task. Primary task is of the utmost importance and the operator’s 

performance on that task is continuously monitored. The side task is performed 

concurrently with the primary task and can be used to probe the spare cognitive capacity 

remaining after the primary task. This way, the performance while executing the side task 

is a proxy for measuring the spare cognitive capacity. Since driving itself is often within 

the cognitive limits of the operator, by introducing side tasks, an overload condition may 

occur. This approach is sometimes used in driving research. For example, Reimer et al. 

[69] used a delayed digit recall secondary task (n-back) while driving to evaluate gradual 

changes in cognitive load as detected by physiological measures. Similarly, Harbluk et al. 

[21] used single and double digit addition problems as the cognitive task. However, often 

the goal of a study is not to probe the spare capacity with a secondary task, but rather to 

investigate the secondary task as the addition to the primary task of driving. In that sense, 

the secondary task may be considered as another “primary task” of interest. The approach 

used in this case is referred to as the embedded secondary task.  

According to Eggemeier and Wilson [70], an embedded secondary task is a 

function conducted by the operator concurrently with the primary task, but is distinct 

from the primary task which is being assessed. The advantages of this approach are that 

both tasks constitute normal operator behavior, do not appear artificial to operators and 

have high operator acceptance. The embedded secondary task approach is used 

exclusively in the studies presented in this dissertation, since each study is concerned 

with a particular in-vehicle device whose impact on driving is of interest. For example, in 

the police radio study (“Interacting with Mobile Radios”), we investigated changes in 
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primary task performance (driving) resulting from interactions with the radios (embedded 

secondary task). Similarly, in order to test our hypotheses specified in the introduction, 

we will analyze the effects of multiple personal navigation devices (“Exploring 

Augmented Reality Navigation Aids”) as well as iPod interactions on driving (“Highway 

Driving and iPod Interactions” and “City Driving and iPod Interactions”). All of these 

secondary tasks are commonly performed in vehicles, thus ensuring drivers’ acceptance 

and similarity to real life driving. 

In the context of driving research, primary-task measures are referred to as 

driving performance measures and they typically include: lane position, steering wheel 

angle, velocity, lateral velocity, following distance, headway time, time to collision, 

number of lane crossings, number of collisions and many others. Most of these variables 

are continuous in their nature and are typically transformed in some way in order to 

obtain more descriptive metrics that would be suitable for follow-up statistical analysis. 

The most common transformations are the mean [12-14;16;19;20;23;35;71] and variance 

[16;22;23;25;35] or standard deviation [12;14;15;18;19;35;71;72] of a desired driving 

variable. Usually, in case of variances or standard deviations of driving performance 

measures, a higher numerical value in one experimental condition in comparison to 

others indicates worse driving. One good example is the study where we explored the 

influence of speech recognition engine’s accuracy on driving performance [22] (“Speech 

Interface Accuracy and Driving Performance”), where the low recognition accuracy 

condition was associated with higher variances of the steering wheel angle compared to 

the high accuracy condition. This suggests that in the low accuracy condition the 

participants expended more effort on steering in order to keep the vehicle in the lane.  
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The above mentioned transformations are applied to each experimental 

condition, either as a whole or with some appropriate segmentation (for example, the 

beginning of a segment can be each time a driver uttered a command to an in-vehicle 

interface). This way each condition (or each segment) is characterized with a single 

number that can be used for comparison with other conditions using various statistical 

methods, such as ANOVA [12;14-16;22;23;25;26;71-73]. However, as explained in 

Section 1.1.2 of the introduction, the consequence of applying average-based 

transformations is that the important effects of in-vehicle interactions on driving may not 

be detected in the averages. This of course does not mean that the average-based 

measures are not useful. In fact, they are used throughout this dissertation as can be seen 

in Table 2.3. The top row shows the specific measures employed in each study. Studies 1 

through 4 were used in Chapter 1 to support the definition of the main problem. Studies 5 

through 7 will be used in the following chapters for testing all of our hypotheses. By 

comparing the results obtained using average-based measures with the ones obtained 

using our proposed cross-correlation method we will be able to draw conclusions about 

their sensitivities to changes in cognitive load.  

Since in our proposed cross-correlation method we use glances directed away 

from the road to indicate where changes in driving performance may occur, we can 

categorize the cross-correlation results under the performance measures as well. Section 

2.4 gives an overview of multiple scientific areas where the cross-correlation function has 

been applied successfully. 
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Variance 
of lane 

position 

Variance 
of 

steering 
wheel 
angle 

Variance 
of velocity

Mean of 
velocity 

Number 
of 

collisions 

1 Interacting with 
Mobile Radios D D D     

2 

Speech Interface 
Accuracy and 

Driving 
Performance 

D D D     

3 

The Effects of 
PNDs on Driving 

and Visual 
Attention 

D D D D   

4 Glancing at PNDs 
Can Affect Driving D D D D D 

5 
Exploring 

Augmented Reality 
Navigation Aids 

D D D D D 

6 
Highway Driving 

and iPod 
Interactions 

D D D D D 

7 City Driving and 
iPod Interactions D D D D D 

Table 2.3 Average-based driving performance measures employed in studies presented in 

this dissertation. 

2.2.2 Physiological Measures 

Physiological measures enable workload assessment based on the biological 

processes, such as heart rate, respiration, pupil dilation, etc. Some of these measures 

appear sensitive to global changes in workload levels (such as pupil dilation), while some 

appear diagnostic to a specific resource usage (such as event-related brain potentials). 

Most physiological measures are controlled by the autonomic nervous system (ANS). 

This means that they are not under voluntary control, which makes them fairly objective. 
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Some of the more popular physiological measures include: heart rate [31-33], skin 

conductance [31;32], transient cortical evoked response [9;11], pupillary response 

[74;75], heart rate variability [76;77], and so on.  

It has been shown in the research literature that both heart rate (HR) and skin 

conductance (SC) increase as the cognitive load increases [31;32;69;78]. As part of 

testing our hypotheses, we propose to collect those variables in our final study of iPod 

interactions while driving (“City Driving and iPod Interactions” – see Chapter 4). The 

reason for including those measures is to demonstrate that cross-correlation results 

indicate changes in cognitive load in the same direction as the physiological measures. 

This provides another source of support for construct validity of our method and also 

goes along well with Wickens’ assertion [10] about avoiding circular arguments, as 

discussed in Chapter 1. 

Heart rate (HR) is obtained from the electrocardiogram (ECG), which 

represents the electrical activity of the heart muscle. It is obtained by counting the 

number of R-impulses (prominent, periodic changes) in the raw ECG signal and is 

expressed as the number of beats per minute. Inter-beat interval (IBI) is inversely related 

to HR and can also be used. It is measured as the time interval between consecutive R-

impulses. Heart activity is controlled by the autonomic nervous system (ANS), such that 

the sympathetic branch increases the heart rate, while the parasympathetic branch 

decreases the heart rate.  

Electro-dermal response (EDR) [79] is also controlled by the ANS and 

represents changes in electrical properties of the skin (eccrine sweat gland activity), 

which are caused by environmental and psychological states of an individual. Even 
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though skin resistance can be measured as well, some of its properties make it less 

desirable [80]: it is strongly influenced by the features which are not relevant to the 

physiological activity, it is far less linearly related to the activity of sweat glands and its 

measures are less normally distributed than the measures of skin conductance. Thus, skin 

conductance is the preferred option when analyzing EDR and it is measured in micro 

Siemens [µS]. There are two types of EDRs: tonic and phasic [79]. Tonic response is the 

“baseline” level without any stimulating events. Phasic responses occur when stimulating 

events take place and are characterized by rapid peaking (with some latency) in skin 

conductance followed by returns to the tonic level. However, phasic responses often 

occur without any specific stimuli and are thus called non-specific EDRs. 

Various measures can be extracted from the raw HR and SC signals: heart rate 

variability (HRV) in case of heart rate and latency, rise times, recovery times and 

frequency of EDRs per minute in case of skin conductance. We decided to apply the 

same approach as Mehler et al. [32], who calculated average values of heart rate and skin 

conductance for multiple levels of secondary task difficulty. Their results indicated 

incremental increases in both variables with the increase of cognitive load introduced by 

a delayed digit recall secondary task (n-back). Thus, in our experiment (“City Driving 

and iPod Interactions”) we also calculate the average values of both heart rate and skin 

conductance signals for each experimental condition. We then perform statistical 

analyses to determine whether there exist significant differences in experienced cognitive 

load between those experimental conditions (see Chapter 4). In order to demonstrate 

support for construct validity, we also compare those results to the ones obtained by our 

cross-correlation method. The main advantage of these measures is that they are simple to 
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implement (relatively simple and unobtrusive instrumentation) and interpret. However, 

since these measures are also continuous in their nature, the averaging can produce the 

same problem as before – localized changes may not be successfully detected. 

Another group of measures which can be classified under the physiological 

category is visual attention. Visual attention describes the behavior of a driver’s gaze 

while driving and can be characterized with various measures, such as the duration and/or 

number of glances [24;34;81], duration and/or number of fixations [27;29;82], eyes-off-

the-road time [12;28;30], gaze location [21;82].  

According to SAE J2396 and ISO 15007 standards [83], a glance can be 

defined as a series of fixations directed at a target area until the eyes are moved to a new 

area. The same standards define a fixation as the alignment of the eyes, such that for a 

certain period of time the image of the fixated object falls on the fovea. In other words, 

fixations are limited in both temporal and spatial direction, since they are directed to 

approximately the same location longer than some predefined time interval [29] (for 

example, within 1° of visual angle and longer than 0.5 sec). In this dissertation we are 

concerned with all glances directed off-road, which reflects our expectation that in 

general they negatively affect driving performance. Therefore, we use all off-road 

glances in order to implement our cross-correlation method.  

SAE J2396 defines glance duration as the amount of time from the moment 

when the gaze moves toward a desired target to the moment it moves away from it. This 

information can be used to obtain the total eyes-off-the-road time, which shows the 

amount of time a driver spends looking away from the road. Equivalently, eyes-off-the-

road time can be transformed to eyes-on-the-road time and expressed as a percentage of 
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the total experiment time. This metric is then called the percent dwell time on the forward 

road (PDT), which shows on average the percentage of time a driver spends looking at 

the road ahead [15]. PDT has been used extensively in almost all of our studies (see 

Table 2.4 below). 

Finally, we use the information about the duration and number of off-road 

glances to obtain a finer picture about the way different experimental conditions 

influence drivers’ visual attention, besides just the overall percent of time spent looking 

at the road expressed through PDT. 

Table 2.4 gives an overview of the physiological measures employed 

throughout this dissertation.  
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1 Interacting with Mobile 
Radios          

2 
Speech Interface 

Accuracy and Driving 
Performance 

         

3 
The Effects of PNDs on 

Driving and Visual 
Attention 

D 
 

D D   

4 Glancing at PNDs Can 
Affect Driving    

D D   

5 Exploring Augmented 
Reality Navigation Aids D D D     

6 Highway Driving and 
iPod Interactions D D D     

7 City Driving and iPod 
Interactions D D D   D D 

Table 2.4 Physiological measures employed in studies presented in this dissertation. 
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The header of the table shows the names of the specific measures, while the 

rest of the rows indicate the actual measures used in each study. The statistical analyses 

were performed on average values (means) of each physiological measure. The first two 

rows in the table are empty, because an eye-tracker and a physiological monitor were not 

available for those studies. The last three rows indicate physiological measures that we 

propose to collect in the studies intended for testing our hypotheses. 

2.2.3 Subjective Measures 

Subjective measures have been used very frequently in the research literature 

to assess operators’ workload. Some of the reasons for their popularity include their 

sensitivity and ease of implementation.  

Workload related research has been especially active in the area of pilot 

workload, which resulted in various rating scales being developed over the years, such as 

the Cooper-Harper scale [84], Subjective Workload Assessment Technique (SWAT) [85] 

and NASA Task Load Index (NASA-TLX) [86]. Some of the above rating scales found 

their way into the automotive environment, such as the NASA-TLX [21;24;30;39;72;87-

89]. Other scales, intended to specifically address the automotive context, are available as 

well, such as Driver Activity Load Index (DALI) [90;91] (which was derived from 

NASA-TLX), Behavioral Markers of Driver Mental workload (BMDMW) [92] and PSA-

Task Load Index (PSA-TLX) [92]. 

NASA-TLX is used very frequently in the research literature. It is a 

multidimensional assessment tool, which consists of six scales: mental demand, physical 

demand, temporal demand, performance, effort and frustration. Each scale is divided in 
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20 equal intervals anchored by bipolar descriptors (i.e., Very Low/Very High). After the 

participants provide ratings on each of the scales, they are asked to perform all possible 

2-way comparisons (15 in total) of the six scales. This way they compare which of the 

two dimensions contributed more to the overall feeling of workload. The results of the 

comparisons are used for calculating the weighing factors, which are then used to obtain 

the overall estimate of cognitive load. Given its popularity among other researchers, the 

majority of the studies presented in this dissertation use the NASA-TLX scale. Appendix 

B gives the descriptions of the six scales given to the participants as well as the NASA-

TLX questionnaire itself. It is administered in each of the three studies presented in 

Chapters 3 and 4 (“Exploring Augmented Reality Navigation Aids”, “Highway Driving 

and iPod Interactions” and “City Driving and iPod Interactions”) for the purpose of 

demonstrating construct validity of the cross-correlation method proposed in the 

introduction. Namely, we compare whether the results obtained using the cross-

correlation method support the same trends observed using the NASA-TLX 

questionnaire. The positive relationship between the two provides support that the cross-

correlation results indicate changes in cognitive load. 

Often researchers use Likert scales in order to obtain an answer to a particular 

question [16;21;24;28;35;82]. Likert scales consist of a number (typically 5 or 7) of 

ordered choices that the participants are supposed to select from when providing their 

opinion about the given question. For instance, in a study presented in Chapter 3 

(“Exploring Augmented Reality Navigation Aids”) we intend to rate participants’ 

agreement with two preferential statements pertaining to the experimental conditions. 

The corresponding Likert scales will consist of 5 options: 1 – highly agree, 2 – agree, 3 – 
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undecided, 4 – disagree and 5 – highly disagree. The data will then be aggregated from 

all participants and analyzed as a whole. When analyzing the data that originate from the 

Likert scales, a word of caution is necessary. Since the ratings are not continuous, but 

rather ordinal, summarizing the central tendency from a Likert scale data should not be 

done using averages, but rather using medians or modes [93]. Similarly, non-parametric 

tests should be preferred to parametric tests for statistical inferences, such as the chi-

square test or Kruskal-Wallis test [93].  

Besides rating scales, self-report measures, such as interviews and post-

experiment questionnaires [21;28;94;95] also fall within the category of subjective 

measures. They are usually less formal than the rating scales, however, the main 

advantage of questionnaires is that the participants are given an open ended question 

which they can read and provide an answer without any interference from the 

experimenter. This way, important insights can be obtained about the specific factors that 

affected participants’ cognitive load and their experiences in general, based on which 

educated conclusions can be made. Post-experiment questionnaires are also employed in 

the majority of studies in this dissertation. 

Finally, another self-report measure, which comes from the field of 

psychology, is the Experience Sampling Method (ESM) [96]. As opposed to surveys and 

interviews, which are recall-based techniques (the experiences are reported after the fact), 

ESM does not require recalling the experiences from the memory. Rather, brief 

questionnaires are administered several times (randomly, periodically or when events of 

interest happen) over the duration of the study in order to capture the participants’ 

behaviors, moods, feelings, etc. as they occur in real-time. The experimenters are not 
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present while the ESM is being administered. Like other questionnaires, ESM can be 

used for obtaining both structured (quantitative) and non-structured (qualitative) data. 

Even though this type of questionnaire may not be always applicable while driving, one 

example which uses the same underlying logic (although the authors do not specifically 

state that they are using ESM) is in the 100-car naturalistic study [4]. Namely, the authors 

installed an “incident” pushbutton below the rear-view mirror that the participants could 

press whenever an unusual event occurred in the driving environment. In our studies this 

particular measure was not practical, since it would alter drivers’ normal behavior and 

possibly introduce local changes in driving performance which could be confounded with 

the actual events of interest, such as glances directed off road. 

Subjective measures can be quite effective, since the operators have the 

opportunity to directly express their opinion about the difficulty of the desired task. On 

the other hand, they are usually done with respect to the experiment as a whole, thus 

making them less suitable for detection of rapid cognitive load changes (except possibly 

ESM). Furthermore, the fact that these measures are subjective makes them more difficult 

for comparison between different experiments. This is corroborated by the discussion 

presented in Section 2.1, which states that the task difficulty highly depends on the 

interaction between the task and the operator. 

Table 2.5 gives an overview of the subjective measures used in preliminary 

studies (1 through 4) as well as the studies (5 through 7) proposed for testing our 

hypotheses. As before, the heading shows the names of the measures, while individual 

rows indicate the specific measures employed in each study. 
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1 Interacting with Mobile Radios D  D 

2 Speech Interface Accuracy and Driving Performance   D 

3 The Effects of PNDs on Driving and Visual 
Attention  D  

4 Glancing at PNDs Can Affect Driving  D D 

5 Exploring Augmented Reality Navigation Aids D D D 

6 Highway Driving and iPod Interactions D D D 

7 City Driving and iPod Interactions D D D 

Table 2.5 Subjective measures used in studies presented in this dissertation. 

2.2.4 Criteria for the Selection of Workload Measures 

Each workload measure can be described using five criteria: sensitivity, 

diagnosticity, intrusiveness, implementation requirements and operator acceptance. These 

criteria should be considered in the selection of the appropriate procedure for a desired 

application. O’Donnell and Eggemeier [11] give an excellent overview of the above 

criteria, which will be summarized briefly in the following paragraphs. 

Sensitivity describes the potential of a measure to identify changes in cognitive 

load caused by a task of interest. Based on the task characteristics, a measure with the 

appropriate sensitivity should be chosen. If the goal of the analysis is to determine 

whether the task causes cognitive overloads which degrade performance, then a primary-

task measure should suffice. However, if the goal is to establish whether there is a 

potential for cognitive overload, some of the more sensitive measures should be 

considered, such as subjective, physiological or secondary-task. The reason behind this is 
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that the operators may be able to invest more effort in order to keep their task 

performance at the desired level. Even though this comes at a price of increased 

workload, it cannot be detected using the primary-task measures.  

The sensitivity issue of average-based driving performance measures is exactly 

the main problem we are addressing in this dissertation. We argue that our cross-

correlation method proposed in the introduction will provide higher sensitivity to changes 

in primary-task measures caused by cognitive load. 

Diagnosticity comes from the multiple-resources theory [10] and it determines 

the capability of a measure to distinguish which of the available resources is being used 

by the task of interest. For example, pupil diameter has the potential to assess overall 

workload on the processing system. In other words, this type of measure does not have 

high enough diagnosticity necessary for distinguishing a particular resource affected by 

the task. Conversely, the event-related brain potentials appear to be highly diagnostic to 

some particular resource usage. Therefore, we can say that physiological measures can 

either have high or low diagnosticity. Subjective measures typically have low 

diagnosticity as a result of the operators’ inability to discriminate between different 

resources. Similarly, primary-task measures exhibit low diagnosticity, since it is usually 

not obvious which particular resource caused decrements in task performance. On the 

other hand, secondary-task measures are usually highly diagnostic, since they can be 

designed to probe the spare cognitive capacity on the specific resources. The required 

level of diagnosticity depends highly on the general objectives of the analysis. If the goal 

is to estimate the overall workload experienced by the operator, then a less diagnostic 
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measure can be used. On the other hand, if the goal is to pinpoint the specific resource 

which is being heavily loaded, a more diagnostic measure should be applied.  

Our cross-correlation method is initiator-based, which means that it uses 

instances of secondary task engagement as reference points for calculations. If the 

individual interactions use only a single modality (such as visual interaction in 

“Exploring Augmented Reality Navigation Aids” study), this has the potential to provide 

fairly high diagnosticity. Namely, we proposed (hypotheses H1 and H2) to use glances 

directed away from the road as individual instances of secondary task engagement. The 

reason for this is that we expect that the changes in driving performance measures will be 

affected by the cognitive load caused by sharing visual resources between the driving and 

the secondary task. On the other hand, if the interaction is multimodal (such as manual-

visual interactions in “Highway Driving and iPod Interactions” and “City Driving and 

iPod Interactions” studies), multiple resources are used while engaging in the secondary 

task. In this case we expect that our method will provide less diagnosticity.  

Primary task intrusion is the amount of primary task performance degradation 

attributed to the workload measure itself. Depending on the experimental condition to 

which the workload measure is applied, different levels of intrusion may be tolerated 

(e.g., field study vs. simulation). Nevertheless, extreme levels of intrusion should be 

avoided (or at least minimized), since they may lead to difficulties in the interpretation of 

the results. By the definition, primary-task measures are not intrusive. Subjective and 

physiological measures are in general the least intrusive, since often they do not require 

any additional activity by the operator while performing the primary task. In contrast, 
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secondary-task measures usually induce significant intrusion, especially if they appear 

very artificial compared to the primary task. 

Since our cross-correlation method uses visual attention and driving 

performance data, we can say that it is not intrusive. 

Implementation requirements specify the complexity of the measurement 

procedure, such as the required equipment and supporting software. An appropriate 

measurement technique should be selected based on these requirements and practical 

constraints. Subjective measures are in general the simplest to implement, since they are 

often performed after the conclusion of the experiment and require very simple tools. 

Primary-task measures are fairly simple to implement as well. On the other hand, 

physiological and secondary-task measures usually require significant instrumentation, 

software support, operator training or equipment calibration. 

The implementation requirements of our cross-correlation method are 

somewhat higher on the software side compared to average-based driving performance 

measures. However, the algorithm can be implemented once and reused in many different 

studies. 

Operator acceptance is defined as the participant’s recognition of the 

usefulness of a measurement technique. Attention should be paid to this criterion 

especially when the participants represent proficient operators of the desired system. Care 

should be taken to make the measurement technique less artificial and intrusive, since it 

increases the participants’ acceptance.  
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In all of our experiments we use the embedded secondary task approach, where 

the participants interact with interfaces commonly found in vehicles. Additionally, since 

our cross-correlation results are obtained in post-processing, we can expect that the 

operator acceptance is high.  

2.3 Experimental Method 

So far we had a chance to observe how distractions in vehicles occur, how they 

can result in increased cognitive load and how those effects can be detected using various 

types of measures. However, it is also of interest to examine the typical experimental 

methodologies that the researchers employ when analyzing in-vehicle interactions. 

2.3.1 Experimental Apparatus 

Depending on the research capacities, studies are done on personal computers 

[20;28;73], in driving simulators [12-20;22;23;25-27;35;37;55;72;97-100] or in real cars 

[4;31;37;101-103]. Since all of the studies presented in this dissertation were performed 

in a driving simulator, we will focus our attention on driving simulator studies.  

Driving simulator studies are very popular because they do not involve any 

risks to participants, are repeatable, easily customizable, and provide various data which 

would require complicated instrumentation if desired to be collected in real vehicles. 

Even though driving simulators do not provide the same level of realism as real driving, 

they still have a fairly high validity with the results mostly matching the ones obtained in 

on-road studies [37;104-109]. Lew et al. [108] performed driving simulator experiments 

with participants suffering from a traumatic brain injury. Their results show that the 

driving simulator performance measures were good predictors of future driving 
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performance in real-life when participants have regained some of their abilities lost due 

to the injury. Wang et al. [107] compared three manual address entry methods in an on-

road study and in a medium fidelity, fixed-base driving simulator. Their results indicated 

that the visual attention and task measures matched very closely between the two 

environments. Reed and Green [37] used a telephone dialing task to compare driving 

performance measures between a low-cost driving simulator and on-road driving. They 

found that lane-keeping performance was less precise in the simulator than on-road. 

However, speed control was comparable. The same trends were observed with respect to 

telephone operation: higher variation of lane position and speed were observed while 

dialing the phone both in the simulator and on-road. The overall conclusion was that their 

simulator provided a good absolute validity for speed control and good relative validity 

for driving precision. Driving simulator studies can also help in understanding of human 

perception and self-motion, which is especially important at speeds and accelerations 

higher than with natural locomotion [109].  

The simulator used in the studies presented in this dissertation is a high-fidelity 

driving simulator [110]. It provides a very immersive environment with a full car cabin, 

180° field of view screen, realistic sounds and vibrations and a motion base for 

simulating braking and acceleration (see Appendix B for a detailed description of the 

simulator’s capabilities). This kind of simulator has been used widely by the researchers 

and practitioners in the area of driving research [26;50;111-113]. For example, Slick et al. 

[106] demonstrated that this particular type of driving simulator can be used as a 

substitute for naturalistic on-road experiments. They conducted multiple high-risk 

training scenarios, such as the right/left turn at a stop sign or right/left turn at a traffic 
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light, using two alternatives: driving simulator and a real car. Their results indicate no 

significant differences between participants who were trained using either of the two 

alternatives. These findings are very important, since they offer evidence about the 

validity of the conclusions drawn from this type of driving simulator. 

Driving simulators can sometimes create adverse effects on participants known 

as simulator sickness, which is usually manifested through headaches, blurred vision, eye 

strain, nausea, and so on. Mourant and Thattacherry suggest [114] that the vehicle 

velocity may be an important factor, with higher velocities introducing more sickness. 

Burnett et al. [115] indicate that the simulator sickness may be mediated by using real car 

cabins in driving simulators (as is the case with our driving simulator), which can also 

help with the validity of the results.  

From our experimental experience, simulator sickness typically occurs in 

highly demanding environments which involve frequent 90° turns, such as in the city 

environment. In agreement with Mourant and Thattacherry [114] we discovered that the 

likelihood of simulator sickness increases with the speed at which the turn is negotiated. 

This can be explained by the very fast movement in the peripheral vision which 

overwhelms the visual experience, however, without the presence of the corresponding 

forces on the participant’s body. Even though our driving simulator possesses a motion 

base with one degree of freedom (simulating longitudinal movement while braking and 

accelerating) it does not help with turns. This disconnect between what the participant 

sees and feels results in simulator sickness. We found no suitable questions about 

participants’ everyday behavior (such as playing sports, video games, riding on roller-

coasters and seasickness) that could be asked during the recruitment phase in order to 
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determine whether a particular person would be susceptible to simulator sickness. 

However, increased sweating proved to be one physiological characteristic which is a 

very good precursor for simulator sickness. In order to prevent simulator sickness from 

occurring during the experiment, we gave each participant a training session in order to 

get accustomed to the driving simulator. During this session we monitored participants’ 

behavior through the eye-tracker cameras mounted on the dashboard and periodically 

asked them questions about their condition, such as “Are you feeling warm or sweaty?”, 

“Are you feeling dizzy?”, “Are you experiencing a headache?”. The participants who 

successfully finished the training session were then allowed to participate in a study. 

2.3.2 Experimental Approach 

When designing test drives in driving simulators the researchers typically use 

the following approaches: unconstrained driving [13;23;27;99], driving with a 

predetermined speed and position in the lane [15;20;25;72] or following a lead vehicle 

[12;14;18;19;22;116]. Unconstrained driving is the closest to real life, since participants 

are instructed to drive as they normally would while obeying all traffic laws; however, in 

this case the driver has the liberty of changing his/her behavior without constraints, which 

introduces additional variables that cannot be easily accounted for, such as changing 

lanes and velocity. Instructing drivers to maintain a constant speed and to remain in a 

particular lane during the experimental run does not result in realistic driving. 

Nevertheless, it facilitates the detection of a secondary task influence by analyzing the 

variables that the driver is supposed to keep constant. A similar approach is used with the 

lead vehicle option, where a driver is instructed to keep constant distance (gap) behind 

the vehicle in front. 
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Properly designed experiments provide motivation for avoiding accidents and 

maintaining the same kind of driving behavior as they would in the real setting. Thus, we 

strive to make our experiments less artificial and as close to real driving as possible. 

Table 2.6 outlines the driving types used in the studies presented in this dissertation.  

Study number Study name Driving type 
1 Interacting with Mobile Radios lead vehicle 
2 Speech Interface Accuracy and Driving Performance lead vehicle 

3 The Effects of PNDs on Driving and Visual Attention unconstrained 
driving 

4 Glancing at PNDs Can Affect Driving unconstrained 
driving 

5 Exploring Augmented Reality Navigation Aids unconstrained 
driving 

6 Highway Driving and iPod Interactions lead vehicle 
7 City Driving and iPod Interactions lead vehicle 

Table 2.6 Driving types employed in studies presented in this dissertation. 

As we can see, in the preliminary studies (1 through 4) we used two 

approaches: following a lead vehicle and unconstrained driving. Following a lead vehicle 

is fairly close to real life, since it happens often that friends travel separately in individual 

vehicles and the leader knows the way. In the unconstrained driving approach, the drivers 

were instructed to drive as they normally would, follow the speed limits and obey all 

traffic rules. To make the driving task even closer to real life in study 4 we introduced 

realistic traffic, pedestrians and unexpected events (pedestrians jaywalking, cars braking, 

etc.) which are all very common in a busy city environment.  

We decided to use the same approaches in the studies proposed for testing our 

hypotheses (studies 5 through 7 in Table 2.6). Study 5 will be testing personal navigation 

devices. Since the navigation directions are the most useful in city driving, we will 

implement a realistic city environment with unconstrained driving in this study. Studies 6 
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and 7 will be testing interactions with an iPod while driving. For this purpose we will use 

a lead vehicle approach - once on a straight highway road and once on a straight city 

road. As we already discussed, this setting occurs sometimes in real life, thus ensuring 

that the task will not appear artificial to participants. Furthermore, it is still fairly simple, 

which limits the number of confounding variables that may cause difficulties in 

interpreting the data. 

2.4 Studies Employing Cross-Correlation Function 

Cross-correlation is a powerful function which can detect similarities between 

the given sequences as a function of time or spatial lag applied to one of them. This 

makes it a versatile tool which has been successfully applied in many fields of science.  

An example of its application in marine ecology is the work of Veit et al. 

[117]. The authors sampled bird abundance and ocean temperature four times a year for 

eight years off the California shore. They calculated the Pearson correlation coefficients 

between these two sequences and used a randomization procedure to evaluate statistical 

significance. The procedure calculated correlation coefficients 100 times between 

randomly rearranged bird values and original temperatures. For each lag they counted the 

correlation coefficients from these mismatched sequences that were larger in absolute 

value than the coefficient calculated using the original matched sequences. If the 

resulting number was under a threshold, the coefficient calculated using matched 

sequences was statistically significant. The randomization procedure used by Veit et al. 

inspired our approach for determining the statistical significance of the obtained cross-

correlation results (see Chapter 3 for details). 
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In neurology, Simpson et al. [118] analyzed the dependence between cerebral 

blood flow velocity (CBFV) and the power of spontaneous electro-encephalographic 

(pEEG) signals in healthy term neonates. They calculated the maximum of the cross-

correlation function between these sequences for each of their nine participants. In order 

to test for the statistical significance of the results, they applied a Monte-Carlo method. 

Namely, using the amplitude spectra of the original signals and randomly generated 

phase spectra, they calculated uncorrelated CBFV and pEEG signals using an Inverse 

Discrete Fourier Transform (IDFT). Then they compared the maximum of the true cross-

correlation function (obtained using real signals) with the distribution of maxima from 

the simulated cross-correlation functions. Statistical significance was then determined as 

the fraction of maxima from the simulated sequences that is larger than the maximum 

from the original sequences. This way they produced estimates of significance for each 

subject individually. In contrast, in our approach we provide an overall cross-correlation 

function estimate as well as its statistical significance level over multiple participants. 

Cross-correlation also has its application in time delay estimation (TDE) [119]. 

TDE is an important research area which has applications in various fields, such as radar, 

sonar, geophysics, etc. The main goal of TDE is to estimate the time difference that exists 

between two received signals which are detected by different sensors. If it is the case that 

the two signals are delayed and attenuated versions of the original signal (such as the 

echo that can be heard sometimes in the long distance calls), the relative delay between 

them is equal to the time-lag which maximizes the cross-correlation between these 

signals. Similarly, in our proposed method we expect that a time lag (delay) exists 

between glances directed away from the road and increased changes in driving 



 

87 
 

performance measures (specifically, significant peaks observed in lane position and 

steering wheel angle cross-correlation functions).  

Reich et al. [120] used a cross-correlation function to analyze the spatial 

relationship between stand characteristics (basal area growth, stand age, site index of 

productivity, mortality, tree density, number of trees per hectare) of undisturbed, 

shortleaf pine stands in northern Georgia sampled over two ten-year periods. For each 

period they calculated the cross-correlation statistic for all pairwise combinations of the 

above stand characteristics. The results indicated a significant cross-correlation between 

the basal area growth and other stand characteristics, which were due to small clustering 

in the northern parts of the state. This was contrary to the regional and broad scale 

variation that was initially assumed. The authors emphasized the importance of using 

multiple techniques when interpreting patterns under investigation in order to obtain 

better understanding. This overall conclusion goes along well with the research presented 

in this dissertation, since we introduce the cross-correlation measures which can extract 

important patterns from the driving data in addition to the average-based measures. 

Sarvaiya et al. [121] applied normalized cross-correlation function for template 

matching in medical imaging. Namely, they used small reference images of the areas of 

interest and detected matching regions in bigger, sensed images. By normalizing the 

result for the sensed image, they obtained very high recognition rates. The authors 

concluded that the normalized cross-correlation function provided excellent matching in 

images both with and without noise. In one case of our method we also propose to 

normalize the cross-correlation result (hypothesis H2) in order to obtain an estimate of 

cognitive load changes resulting from individual instances of secondary task engagement. 
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2.5 Studies Employing Regression Analysis 

As stated in the introduction, our third goal (G3) is to provide explanations for 

the mechanisms underlying our cumulative and instance-based performance measures. 

We propose in our third hypothesis (H3) that this goal can be accomplished by revealing 

the variables which significantly contribute to the observed results. To this end, we intend 

to create multiple regression models which will help in revealing these underlying 

relationships. This approach has been used often by the researchers in the automotive 

area and the following paragraphs will review some of their results. 

Zhang et al. [30] conducted a driving simulator experiment in order to 

determine the eye-gaze measures which are diagnostic of decrements in driving 

performance. The simulated environment comprised of two road types (rural and 

highway) and two levels of curvature (straight and curvy). As a distraction task, the 

participants were asked to read common words presented in three rows on displays 

mounted in the center console, above the dashboard and on the left side of the simulator 

cabin. The authors derived multiple regression models of the type ܻ ൌ ܽ  ܾܺ, where ܺ 

represented independent variables describing visual attention (such as, total glance 

duration, weighted gaze variability, weighted gaze vector) and ܻ represented dependent 

variables describing driving performance (accelerator release time, standard deviation of 

lane position and steering entropy). The strengths of the fits, as judged by the coefficient 

of determination ܴଶ, ranged from 0.34 to 0.85. Since the slopes of all regression 

equations were positive, the authors concluded that as the visual distraction increased, 

driving performance decreased. This agrees with the hypothesis underlying our cross-

correlation method that glances directed off-road may negatively impact driving. Similar 
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to this study, we also intend to use glance duration in our regression analyses. However, 

we will also include number of glances and PDT away from the road, since they provide 

additional information about drivers’ visual attention. 

In the first driving simulator study presented in [15], Horrey et al. explored the 

impacts of the relative value of tasks (driving and in-vehicle task) and their bandwidths 

on visual sampling behavior. The value of the task represented which task was 

prioritized: driving, in-vehicle or both tasks. The bandwidth of the driving task was 

selected to be low or high by adjusting the frequency of the applied wind gusts. Similarly, 

the bandwidth of the in-vehicle task was set to either low or high by changing the 

frequency at which 7-digit phone numbers appeared on an HDD screen. For the in-

vehicle task the participants we instructed to read the phone numbers aloud whenever a 

new number appeared on the screen. A regression equation calculated between the 

variability of lane position and the mean PDT to the outside world indicated a negative 

relationship, with PDT explaining 41% of variance encountered in lane position (ܴଶ ൌ

0.41). In other words, as the scanning (PDT) to the outside world decreased, the 

variability of lane position increased. This conclusion is important and since we intend to 

include PDT in our regression analyses as well, we expect that our results will point in 

the same direction: the increase in PDT away from the road should be followed by an 

increase in our cross-correlation results. 

Using the voluntary visual occlusion technique (the participants were 

instructed to press a button to request a 500msec glimpse of the road) applied in a driving 

simulator, Tsimhoni and Green [122] examined the visual demand of driving while 

concurrently interacting with in-vehicle displays. The visual demand of the driving task 
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was manipulated by driving on roads with four levels of curvature (curve radius). For the 

secondary task the participants completed a map reading task by responding to questions 

of varying difficulty. The maps were displayed on an HDD. Regression analysis 

demonstrated a very strong linear relationship between visual demand and the reciprocal 

of curve radius (ܴଶ ൌ 0.98). This agreed with the further finding that the mean glance 

duration towards the in-vehicle screen decreased as the visual demand of driving 

increased (ܴଶ ൌ 0.34ሻ. The overall conclusion was that as the driving visual demand 

increased, the duration of in-vehicle glances decreased while their number increased. In 

testing hypothesis H3 we propose to use two “reference” experiments in two different 

driving environments: highway and city. We expect that the similar result may be 

obtained in our studies as well. 

Another example where regression analysis was successfully applied is a study 

by Green and George [123] where the authors examined the most appropriate distance 

from the intersection at which the auditory guidance system should present turn 

instructions. The experiment was performed in a real vehicle. In one case the participants 

were following a predefined route and asked when they expected a navigation direction. 

In the other case, the participants were continuously approaching two different 

intersections and indicated whether the issued navigation direction was issued too early, 

too late or about right. Regression analyses revealed a significant effect of the 

approaching velocity, drivers’ age, direction of turn and gender. 
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CHAPTER 3 

CROSS-CORRELATION METHOD 

This chapter provides a detailed description of the cross-correlation method 

proposed in Chapter 1. The cumulative and instance-based cross-correlation results are 

demonstrated on two driving simulator studies, which analyze multimodal interactions 

with two types of in-vehicle devices: PND and MP3 player. The results are compared 

with the standard average-based measures as well as the subjective measures of cognitive 

load. Finally, the chapter concludes with the discussion of the observed results.  

3.1 Hypotheses Addressed in this Chapter 

Our first hypothesis (H1) is concerned with initiator-based quantification of 

cumulative secondary task engagement. What this means is that it requires an “initiator 

sequence” which indicates where/when the engagements occur and a “performance 

sequence” which reflects the effects of those engagements (in our case we are concerned 

with the effects on driving, although it can be generalized to any other process of 

interest). Finally, an “extraction function” ܮ is necessary as well which is capable of 

quantifying the cumulative effect of overall secondary task engagements on driving.  
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Similarly, our second hypothesis (H2) is concerned with initiator-based 

quantification of instances of secondary task engagement. In this case we intend to 

estimate the effects of individual secondary task engagements on driving and cognitive 

load. The same aspects discussed in H1 are necessary here as well: extraction function, 

initiator and performance sequences. However, in this case the extraction function should 

be adjusted in order to be able to isolate the effects of individual secondary task 

engagements. The adjustment can be performed by normalizing ܮ with respect to the total 

number of engagements ܰ: ܮᇱ ൌ   .ܰ/ܮ

In both H1 and H2 we proposed to use the mathematical function of cross-

correlation as the extraction function ܮ. Cross-correlation function requires two 

sequences, which agrees with our intention to account for both the initiator and the 

performance sequence. Detailed explanation of the way cross-correlation function is used 

in quantifying the cumulative (H1) and instance-based (H2) effects on cognitive load is 

provided in Section 3.1.3. 

Both hypotheses H1 and H2 address the quantification aspects of our first two 

goals (G1 and G2). However, we also want to be able to rank different types of secondary 

task engagements based on the results obtained using cumulative and instance-based 

measures. This is addressed by a common hypothesis HRP and described in Section 3.1.5. 

3.1.1 General Terminology 

As we indicated in Chapter 1, in this research we are concerned with secondary 

task engagements which draw visual attention away from the road (visual-only and 

manual-visual interactions). Therefore, glances directed away from the road are the 
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obvious choice for the initiator sequence (ߩ). In Chapter 2 we defined glances as the 

general observations of the objects of interest. In that respect they are different from 

fixations, which are limited in both spatial and temporal domain. However, in this 

dissertation we are considering all glances directed away from the road while the vehicle 

is moving, which reflects our expectation that they in general negatively affect driving. 

Nevertheless, since our method is defined in a general fashion, future studies may explore 

the possibility of using fixations as well.  

Regarding a performance sequence (ߠ), a driving performance measure of 

interest can be used. In our case we decided to use steering wheel angle and lane position. 

The main assumption behind the above choices for the initiator and 

performance sequences is that any glances directed away from the forward road (as a 

result of distractions coming from a particular in-car interface) may cause at least a 

temporary change (worsening is hypothesized) in the driving performance measures. We 

suspect that this may be the case, because while looking away a driver is not aware of the 

situation in front of the vehicle, thus making a short pause in willfully controlling a 

vehicle. Since the situation in front of the car changes dynamically, when visual attention 

is returned to the road it is likely that the driver will need to perform a correction in order 

to keep a steady position in the lane. This correction is likely to be correlated with 

glances returning to the road ahead. The corrections are of course not certain (for 

example, occasional brief glances at the speedometer may not require corrections). 

Nevertheless, they are more likely to occur when a driver is occupied with some non-

driving related activity (e.g. looking at an HDD). However, if the same trends of driving 

performance changes keep occurring after looking away from the road, this influence will 
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be detected by the cross-correlation function. This detection is manifested by the 

prominent peaks that indicate the position (time lag) where the highest correlation exists 

between visual attention and a specified driving performance measure, as will be 

explained shortly. Since our cross-correlation method uses whole sequences, rather than 

values averaged over long periods of time, it enables us to analyze the experiment in a 

continuous fashion as time progresses and influences occur.  

Let us define two discrete time sequences ߜሾ݊ሿ and ߠሾ݊ሿ, which are sampled 

versions of continuous time signals ߜሺݐሻ and ߠሺݐሻ, respectively. These continuous time 

signals might represent various processes, but in our case ߜሺݐሻ represents gaze angles, 

while ߠሺݐሻ represents a driving performance measure of interest (such as lane position or 

steering wheel angle). Sampling is performed at some fixed rate, 1/ ௦ܶ, where ௦ܶ is the 

sampling period in seconds. Thus, ߜሾ݊ሿ ൌ ሺ݊ߜ ௦ܶሻ and ߠሾ݊ሿ ൌ ሺ݊ߠ ௦ܶሻ.  

 ሻ is sampled by an eye-tracker and is used to obtain a discrete sequenceݐሺߜ

 Ԣሾ݊ሿ, which contains numerical indexes of the objects that a participant’s gaze intersectsߜ

with. Figure 3.1 shows an example virtual model, which resembles the layout of different 

objects inside the cabin of our driving simulator. As we can see, various objects are 

present in the model, such as the speedometer, steering wheel, left and center rear-view 

mirrors, and so on. The green vector protruding from the yellow avatar indicates the 

direction of a participant’s gaze. Whenever the gaze vector intersects with an object in 

the virtual model, a corresponding object’s numerical index is recorded in the ߜԢሾ݊ሿ 

sequence. In the post-processing we transform ߜԢሾ݊ሿ into ߩሾ݊ሿ (initiator sequence), which 

consists only of 0s and 1s, where 1s indicate glances directed away from the road and 0s 

indicate glances on the forward road. We consider looking at any of the simulator’s 
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screens (front, left and right screen – blue and green planes in Figure 3.1) as looking at 

the road, while looking anywhere inside the cabin as away from the road. 

 

Figure 3.1 Model of our driving simulator’s cabin employed in our eye-tracker. 

In the following, let us say that ݔሾ݊ሿ is a sequence of 0s and 1s obtained from 

the sequence ߩሾ݊ሿ, where a 1 represents instants when the driver’s gaze returns to the 

road (after interacting with an in-vehicle device, for example). According to the notation 

in hypothesis H1, this transformation can be represented as follows: ݔሾ݊ሿ ൌ ݂ሺߩሾ݊ሿሻ, 

where ݂ represents a function which extracts the falling edges of the glances, thus 

producing “reference” points indicating when the gaze returns to the road ahead. Strictly 

speaking since ߩሾ݊ሿ is a discrete sequence, it is not quite accurate to talk about “falling” 

edges of the glances, but those are rather the last samples equal to 1 in each glance. 

Nevertheless, to simplify the terminology, we will refer to the first and the last sample in 

each glance as the rising and the falling edge, respectively. Figure 3.2 depicts both the 
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continuous-time and discrete-time representations of ݔ and ߩ. We will refer to ݔሾ݊ሿ as an 

eye-glance sequence (EGS). Please note that the approach of presenting the data in the 

continuous-time fashion will be applied to all figures in this dissertation. This 

significantly improves the visual representation (as can be seen in Figure 3.2); however, 

we have to keep in mind that all of the variables are in fact discrete sequences.  

 

Figure 3.2 Pictorial explanation of the EGS sequence. 

Let us also say that ݕሾ݊ሿ is a measure of driving performance obtained from 

the raw sequence ߠሾ݊ሿ (e.g., lane position or steering wheel angle). We will refer to ݕሾ݊ሿ 

as a driving performance sequence (DPS) and it is obtained by applying some appropriate 

transformation (݃ as defined in H1), such as the absolute value of change (AVC), to a 

driving performance measure of interest (ݕሾ݊ሿ ൌ ݃ሺߠሾ݊ሿሻ). AVC is defined as follows: 
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ሾ݊ሿሽߠሼܥܸܣ ൌ
ሺ݊ሻߠ| െ ሺ݊ߠ െ 1ሻ|

௦ܶ
 

Equation 3.1 Absolute value of change (AVC) definition. 

and indicates the amount of absolute change in ߠሾ݊ሿ from one sample to another. In this 

case the larger the value of ݕ, the larger the impact on driving performance. 

Based on its definition, AVC always produces positive sequences. In the 

context of analyzing driving performance, AVC resembles the fact that moving too much 

towards either side of the road is equally detrimental for driving. AVC provides the 

magnitude of the change that occurs in a driving performance measure of interest without 

regard to the direction of the change. It can be argued that the direction of the change is 

not very important since, if we take city driving as an example, going too far to the right 

may cause road departure or a collision with parked vehicles, while going too far to the 

left may cause a collision with the oncoming traffic. The need for corrections (large 

changes in AVC following the return of visual attention to the road) indicates that 

something had happened prior to looking back to the road, such as drifting from the 

center of the lane or an unexpected event (e.g. pedestrian) occurring in front of the 

vehicle. 

3.1.2 Requirements of the Method 

Before we continue with the details of the cross-correlation method, it is of 

interest to discuss three topics that are important for properly preparing the eye-tracker 

data for the cross-correlation analysis: correcting glance data, filtering glances and 

sampling rate conversion.  
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Correcting Glance Data 

As we explained in Section 3.1.1 the eye-tracker provides a sequence ߜᇱሾ݊ሿ, 

which contains numerical indexes (integer numbers ranging from 0 to K-1, where K is the 

total number of objects in the eye-tracker’s world model) of the objects that a 

participant’s gaze intersects with. However, it happens occasionally that the eye-tracker 

does not see the participant’s eyes properly and as a result cannot determine where the 

participant is looking at. This is reported by the index “-1” in the data collection. Some 

representative examples include when the participant occludes his/her eyes or the eye-

tracker cameras with a hand, the head moves too far to the right or to the left thus falling 

outside of the cameras’ field-of-view, and so on. In those situations we have to manually 

transcribe the data. For this purpose we use videos recorded by the eye-tracker cameras 

and an additional video of the participant recorded using a separate camera located on the 

dashboard (see Figure 3.3 below).  

 

Figure 3.3 View of the participant from the camera mounted on the dashboard. 
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All the videos are recorded simultaneously by off-the-shelf video recording 

software. Since the eye-tracker overlays a unique frame number on its videos, we can 

manually go through the data collection and correct the data samples (based on the 

associated frame numbers) for which eye-tracking was unsuccessful. In rare situations 

when we are unable to resolve where the participant is looking at, those sections of the 

data are left unchanged and later are detected and rejected in the cross-correlation 

analysis. Specifically, experimental segments which contain data samples labeled “-1” 

are rejected from the further analysis. 

Furthermore, it happens rarely (from our experience in less than 2% of 

experimental segments) that the eye-tracker experiences a temporary delay in collecting 

the data. This is detected as a “discontinuity” (in other words, a gap) in the time sequence 

obtained from the eye-tracker. If the discontinuity is long, the information about glance 

data may be missing. As we will see in section “Sampling Rate Conversion,” we are 

down-sampling our glance data to 10 Hz, which means that the shortest glance can be 

100 msec. This amounts to only 1 sample, so we decided to reject a segment if it contains 

a discontinuity of at least 2 samples, or 200 msec. Nevertheless, this occurs infrequently. 

Filtering Glances 
Glances directed away from the road can occur anywhere during the 

experimental run. Furthermore, due to the very dynamic nature of the eye movements, the 

eye-tracker measurement errors (according to the manufacturer, a typical error in gaze 

direction measurement is between 0.5° and 1°) and the gaze instability (which increases 

as the visibility of eyes decreases), it happens occasionally that the eye-tracker reports 

glances that are either very short and/or separated by very brief intervals of time (in other 
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words, just a few samples). The eye-tracker’s sampling rate is 60 Hz, which means that 

the sampling period equals 0.016 seconds. We can ask two questions here: a) how many 

consecutive samples should be considered to constitute a realistic glance, and b) what is 

the minimum separation in order for the two glances to be considered as individual 

glances.  

We defined our glances according to Wang et al. [107]: a minimum duration of 

any individual glance should be 100 msec (which also agrees with SAE J2396 

recommended practice [83]) and individual glances should be separated by at least one 

glance towards a different target (thus, minimum separation is 100 msec). When the gaze 

travels from the object of interest (e.g., an LCD screen) to another object (e.g., 

windshield) the eye-tracker noise may appear at the boundary between the two objects. 

This is detected as a number of very short glances to and from the object of interest. For 

example, it would appear as if a driver is very rapidly changing the direction of the gaze 

from the LCD screen to the windshield. Such a rapid change of gaze direction is 

unrealistic and it can be attributed to the tracking difficulties.  

In general, the eye-tracker achieves the best performance when the participant 

is looking in the general direction of the eye-tracker cameras; however, when the 

participant changes the direction of the gaze to the side (which is the case when the 

participants look away from the road towards an LCD screen, dashboard or speedometer), 

the visibility of the eyes decreases, which contributes to tracking difficulties. Therefore, 

we can argue that if glances directed off-road appear very close to each other (closer than 

100 msec) we can declare that they belong to a single glance. Since those short glances 

would not be acceptable by the minimum duration rule, we apply the minimum 
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separation rule first and then the minimum duration rule. This way we can account for 

those very short glances as well. Nevertheless, if those very short glances are far (>100 

msec) from other glances, then we reject those and declare them to be the consequence of 

the eye-tracking imperfections. Figure 3.4 illustrates the above procedure.  

 

Figure 3.4 Illustration of the glance filtering procedure. 

The red dotted line in Figure 3.4 represents the original glance sequence 

reported by the eye-tracker, while the solid blue line represents the filtered glance. We 

can see that there are 3 glances away from the road in total reported by the eye-tracker: 

G1, G2 and G3. Their durations are 0.133, 0.383 and 0.033 seconds, respectively. 

According to the minimum duration rule (≥100 msec), we would have to reject G3. 

However, the separation between G2 and G3 (S2 = 0.033 msec) is less than 100 msec. 
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Thus, we concatenate G2 and G3 into a single glance. Since both the separation S1 (0.117 

seconds) between G1 and G2 and the duration of S1 (0.133 seconds) are longer than 100 

msec, we can accept G1 as being an individual glance. As the final result, we obtain a 

filtered glance sequence which consists of only two glances (solid blue line).   

Sampling Rate Conversion 
In general, separate equipment is used for obtaining driving performance and 

visual attention data. Therefore, different sampling rates may be employed. Specifically, 

in the case of driving data (such as steering wheel angle, lane position, throttle position, 

and velocity) typical sampling rates found in the literature range from 5 Hz to 50 Hz 

[13;29;50;53;107;122;124;125], while in the case of visual attention data (such as gaze 

angles, pupil diameter, and blinking) sampling rates range from 30 Hz to 60 Hz 

[29;50;107;124]. Even though our driving simulator supports higher sampling rates, we 

collected all driving related data at 10 Hz for two reasons. First, 10 Hz is commonly used 

in the literature [107;124;125]. And second, very high sampling rates have very short 

sampling periods during which not enough change accumulates between consecutive 

samples to be detected by our driving simulator. Namely, the steering wheel angle is 

changing relatively slowly (the majority of our experiments are conducted on straight 

roads or straight sections of city roads) and the resolution of the rotational encoder used 

for obtaining the steering wheel angle is limited to 0.1°. As a result, when the AVC 

transformation is applied to steering wheel angle, the observed changes between 

consecutive samples equal either 0° or 0.1°. This way we obtain a binary variable, which 

is not useful for determining where the largest changes occur. On the other hand, a 0.1 

second interval allows enough change to accumulate. 
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The eye-tracker data was collected at 60 Hz, which is the only available rate 

offered by the eye-tracker (see Appendix B for a detailed overview of the eye-tracker’s 

capabilities). In order for both EGS and DPS sequences to represent the system in the 

same fashion, they must be sampled at the same rate. This is accomplished by down-

sampling the eye-tracker data from 60 Hz to 10 Hz. However, due to differences in time 

when the initial sample was taken, jitter in sampling and so on, the samples from both 

sequences do not have to occur at the same time instants. In other words, each device has 

its own time scale. The synchronization of the zero points of the two time scales is 

performed by issuing synchronization signals by a custom software/equipment at the 

beginning of each experiment. Those synchronization signals are then detected on both 

devices and used as zero points. Appendix A provides a detailed overview of the 

synchronization procedure. Even though the zero points are synchronized, we cannot 

perform a simple down-sampling by just keeping every sixth sample from the original 

eye-tracker data (60 Hz / 10 Hz = 6). Instead, we apply the following custom procedure: 

a) Detect time instants when each glance starts and ends in the 60 Hz time scale 

(“rising” and “falling” edges) in the glance location sequence (ߩሾ݊Ԣሿ) obtained 

from the eye-tracker. 

b) For each edge in the 60 Hz time scale, find the closest time instant in the 

simulator’s 10 Hz time scale and make it the new edge. 

c) Initialize all samples (now in the 10 Hz time scale) between the new edges to 1s, 

and all remaining samples to 0s.  

The above procedure produces a sequence of glances aligned to the driving 

simulator’s time scale (10 Hz). Figure 3.5 shows one specific example based on actual 
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data. Please note that the signals depicted in this figure are discrete. However, in the 

interest of better visual representation, we plotted both signals as continuous functions, 

rather than individual samples. 1s indicate glances directed off road, while 0s indicate 

glances directed to the road ahead. The solid blue and dashed red lines show locations of 

glances represented on the 60 Hz and 10 Hz time scales, respectively.  

 

Figure 3.5 Converting glances from the 60 Hz time scale (eye-tracker) to the 10 Hz time 

scale (driving simulator). 

We can see in Figure 3.5 that there exists a slight mismatch between the 

glances presented on two time scales. This is expected, since the samples on two scales 

do not have to be aligned. Figure 3.6 shows the zoomed-in falling-edge of the first glance 

from Figure 3.5. As we can see, the edge of the glance on the 60 Hz time scale falls at 

84.52 seconds, which is between 84.49 seconds and 84.59 seconds on the 10 Hz scale. If 
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we check the differences we can see that the smallest one of 0.03 seconds is obtained if 

we take 84.49 seconds to be the falling edge of the glance on the 10 Hz time scale.  

 

Figure 3.6 Searching for the closest sample on the 10 Hz time scale. 

By finding the closest time when converting glances from one scale to another, 

we obtain the best conversion, as opposed to only taking the times larger or smaller than 

the reference time on the 60 Hz scale (“rounding” up or down). This way the maximum 

theoretical conversion error equals to ±0.05 seconds, which occurs when the edge of the 

glance in the 60 Hz time scale falls exactly between two consecutive samples in the 10 

Hz time scale. However, we wanted to empirically check the error which is introduced in 

the process. For this purpose we calculated time differences in rising edges of glances in 

60 Hz and 10 Hz scales for one of our studies that will be presented in Section 3.2.2. We 

repeated the same procedure for the falling edges of glances as well. Figure 3.7 shows the 
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histograms of time differences obtained in each case. In creating these histograms we 

used data from 12 participants, which amounted to a total of 2536 glances. We can see 

that for both rising and falling edges there is practically a uniform distribution of time 

differences around the actual time obtained by the eye-tracker (0 seconds mark in both 

histograms). Furthermore, we conducted a non-parametric Kolmogorov-Smirnov test in 

order to confirm the above qualitative explanation. The test revealed no significant 

deviations from the uniform distribution in each case: p=0.23 for falling edges and 

p=0.95 for rising edges. These results indicate that there is no bias towards any direction 

(left or right from the reference) when performing the conversion. Also, we can see that 

in both cases a maximum offset from the actual glance edge is equal to ±0.05 seconds, 

which confirms the expected maximum conversion error.  

 

Figure 3.7 Differences in rising and falling edges between two time scales. 

3.1.3 Definition of the Method 

Cross-correlation function can be used to indicate an association between two 

sequences. The association may emerge due to a relationship between the sequences that 
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may be either causal or indirect through some known and unknown mechanisms. In the 

case of driving, the relationship between an EGS sequence ݔሾ݊ሿ and a DPS sequence 

 ሾ݊ሿ may exist due to the need for correcting the car’s position in the lane after returningݕ

the gaze to the road. The following sections provide definitions for the cumulative and 

instance-based quantifications of secondary task engagements based on cross-correlation. 

Initiator-based Quantification of Cumulative Secondary Task Engagement 
As proposed in hypothesis H1, the initiator-based quantification of cumulative 

secondary task engagement can be performed by cross-correlating EGS and DPS 

sequences. For two discrete time, causal sequences ݔሾ݊ሿ and ݕሾ݊ሿ of equal and finite 

length ܰ, with (possibly) non-zero values for 0  ݊  ܰ െ 1, cumulative effect of 

secondary task engagement (ܴ௫௬ሾ݈ܽ݃ሿ) can be estimated as follows [126]: 

ܴ௫௬ሾ݈ܽ݃ሿ ൌ

ە
ۖ
۔

ۖ
ۓ  ሾ݉ݕሾ݉ሿݔ  ݈ܽ݃ሿ, 0  ݈ܽ݃  ܰ െ 1

ேିଵି

ୀ

 ሾ݉ݕሾ݉ሿݔ  ݈ܽ݃ሿ, െܰ  1  ݈ܽ݃ ൏ 0
ேିଵ

ୀି

 

Equation 3.2 Initiator-based quantification of cumulative secondary task engagement 

using a cross-correlation function between discrete sequences x[n] and y[n]. 

If ݔሾ݊ሿ is a non-negative sequence of 0s and 1s, and ݕሾ݊ሿ is a non-negative 

measure of driving performance (such as the AVC of lane position), ܴ௫௬ሾ݈ܽ݃ሿ will 

always be greater or equal to zero. In such a case, a peak in ܴ௫௬ሾ݈ܽ݃ሿ might indicate that 

changes in ݔሾ݊ሿ (initiator sequence) are associated with changes in ݕሾ݊ሿ (performance 

sequence) that occur after a certain number of samples, ݈ܽ݃. In fact, the indication is that 

changes in ߩሺݐሻ are associated with changes in ߠሺݐሻ after a time period ∆ܶ, where ∆ܶ is 
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related to the sampling period ௦ܶ and the ݈ܽ݃ as ∆ܶ  ൌ  ݈ܽ݃ · ௦ܶ. The larger the peak in 

ܴ௫௬ሾ݈ܽ݃ሿ, the higher the association. Also note that, for causal sequences ݔሾ݊ሿ and ݕሾ݊ሿ 

that are of equal and finite length ܰ, ܴ௫௬ will have at most ሺ2ܰ –  1ሻ values. The cross-

correlation function obtained using the Equation 3.2 tells us how large the cumulative 

(overall) effect is on the change of a driving variable of interest when looking away from 

the road ahead. Specifically, each time a glance directed off-road appears, there is a 1 in 

the ݔሾ݊ሿ sequence. This results in products which are added to the total sum. In this 

respect it is similar to variance, since it characterizes driving performance in each 

segment as a whole.  

In general, the experimental segments can be of different length. In such a 

case, we may want to introduce weighing for the cumulative cross-correlation functions. 

The reason is that the glances which occur over a short segment should have higher 

importance than the glances occurring over a long segment, which agrees with our 

argument from the introduction that more frequent interactions may produce larger 

effects on driving. The weighing can be accomplished based on each segment’s length 

relative to the total length of all segments. If this weighing is desired, the following 

equation should be used instead of Equation 3.2: 

ܴ௫௬ ሾ݈ܽ݃ሿ ൌ

ە
ۖ
۔

ۖ
ۓ ܶ

ܶ  ሾ݉ݕሾ݉ሿݔ  ݈ܽ݃ሿ, 0  ݈ܽ݃  ܶ െ 1
்ೖିଵି

ୀ

ܶ

ܶ  ሾ݉ݕሾ݉ሿݔ  ݈ܽ݃ሿ, െ ܶ  1  ݈ܽ݃ ൏ 0
்ೖିଵ

ୀି

, ܶ ݄ݐ݅ݓ ൌ  ܶ

ெ

ୀଵ

 

Equation 3.3 Initiator-based quantification of cumulative secondary task engagement 

with weighing which accounts for the segment length. 
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where ܶ is the length of the ݇௧ segment (݇ ൌ 1,…  is the total number of ܯ ,(ܯ,

segments and ܶ is the total length of all segments taken together. In the studies presented 

at the end of this chapter the weighing was not necessary, since all segments were of the 

same length. 

Initiator-based Quantification of Instances of Secondary Task Engagement 
Hypothesis H2 proposes to estimate the amount of change per individual 

instance of secondary task engagement and is defined according to Equation 3.4. ܰ is 

the total number of instances of secondary task engagement (in our case, glances directed 

off-road on a corresponding segment). This way we are able to estimate on average how 

detrimental each individual glance is to driving. 

ܴ௫௬ሾ݈ܽ݃ሿ ൌ

ە
ۖ
۔

ۖ
ۓ 1

ܰ
 ሾ݉ݕሾ݉ሿݔ  ݈ܽ݃ሿ, 0  ݈ܽ݃  ܰ െ 1

ேିଵି

ୀ

1
ܰ

 ሾ݉ݕሾ݉ሿݔ  ݈ܽ݃ሿ, െܰ  1  ݈ܽ݃ ൏ 0
ேିଵ

ୀି

,  ݄ݐ݅ݓ ܰ ൌ  ሾ݊ሿݔ
ேିଵ

ୀ

. 

Equation 3.4 Initiator-based quantification of instances of secondary task engagement 

using a normalized cross-correlation function between discrete sequences x[n] and y[n]. 

Naming Conventions 
We will make a couple of naming conventions here which will simplify the 

terminology in the rest of the text. From now on we will refer to the “cumulative 

secondary task engagement cross-correlation results” as the cumulative cross-

correlations. Similarly, “instance-based secondary task engagement cross-correlation 

results” will be referred to as the per-glance cross-correlations. 
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As we explained in Section 3.1.1 our driving performance sequence (ݕሾ݊ሿ) is 

obtained by applying the AVC transformation to the driving performance measures of 

interest. In our case, we decided to use steering wheel angle and lane position. Of course, 

a separate DPS sequence is obtained for each measure. Those DPS sequences are then 

cross-correlated with the EGS sequence to obtain cumulative and per-glance results. In 

order to simplify the terminology, we will refer to the “cumulative cross-correlation 

results obtained using the absolute value of change of steering wheel angle” as the 

“cumulative steering wheel angle cross-correlations.” The same convention will be used 

for lane position. Likewise, “per-glance cross-correlation results obtained using the 

absolute value of change of steering wheel angle” will be referred to as the “per-glance 

steering wheel angle cross-correlations.” An abbreviation that will be used in the graphs 

is ܴכ, where “*” refers to either steering wheel angle (ݓݏ) or lane position (݈). We do 

not introduce any additional sub- or superscripts in this abbreviation to distinguish 

between cumulative and per-glance cross-correlation results, since this distinction will 

always be clear from the context. 

Example Cumulative and Per-Glance Cross-Correlation Results 
In order to make the cross-correlation calculations easier to comprehend, we 

will present a simple artificial example depicted in Figure 3.8.  
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Figure 3.8 Example cumulative and per-glance cross-correlation results using two 

simulated sequences. 

As before, all variables presented here are discrete, however, continuous 

representation makes them easier to comprehend visually. The figure shows four graphs. 

The top graph indicates that the driver looks away from the road twice (dashed red line). 

The solid blue line in the top graph is the EGS sequence (initiator sequence) and it 

consists of 0s everywhere, except where the driver’s gaze returns to the road. The second 

graph shows a DPS sequence which was obtained using the AVC transformation. For the 

purpose of this example, we selected the two major changes in DPS to appear 0.3 seconds 

after the impulses in the EGS sequence. This indicated the hypothesized corrective 

actions following the two glances directed away from road. Finally, the two bottom 

graphs show the cumulative and per-glance cross-correlation results obtained for the 

above sequences. 
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Since in this case we are using only a single experimental segment, it is very 

easy to relate the cumulative and per-glance cross-correlation results. Namely, the per-

glance result is essentially a normalized version of the cumulative result, with the 

normalization factor being equal to 1/ ܰ, where ܰ ൌ 2 is the total number of glances in 

this segment (compare Equation 3.2 and Equation 3.4). As we will see in the next section, 

in actual studies we calculate both cumulative and per-glance cross-correlation results for 

many experimental segments and participants, which are then averaged to obtain one 

overall response. 

As discussed before, the EGS sequence consists of 1s where the gaze returns to 

the road ahead and 0s everywhere else. This is indeed an initiator sequence, since those 

1s are used as reference points in the cross-correlation formula. Hence, we can say that 

this sequence represents a dimensionless quantity. On the other hand, DPS sequence is in 

our case obtained by applying the AVC transformation to either steering wheel angle or 

lane position, which makes its units [degrees/second] or [meters/second], respectively. 

Since the cross-correlation formula involves multiplication of the samples from the EGS 

and DPS sequences, we can say that the units for the cumulative cross-correlation result 

are [degrees/second] for steering wheel angle and [meters/second] for lane position. The 

same units essentially apply in case of the per-glance cross-correlation result. However, it 

is important to emphasize that this result is based on the instance of secondary task 

engagement, that is, per-glance. 

As we can see in Figure 3.8, the highest cross-correlation peaks appear at the 

lag of 0.3 seconds (after the gaze returns to the road) for both cumulative and per-glance 

cross-correlation functions. This lag is equal to the separation between falling edges of 
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glances (in EGS sequence) and the observed peaks in changes in driving performance (in 

DPS sequence). The second largest peak appears at the lag of 3 seconds and it is the 

result of the first glance (occurring at 2 seconds) getting correlated with the second 

change in DPS (occurring at 5 seconds). This is the result of the way cross-correlation 

function is calculated. Namely, one sequence is being shifted over the other one, thus the 

changes in driving performance may get correlated with glances which are not directly 

related to them. These “distant” correlations occur far from the lag of zero and are 

smaller in magnitude, since a smaller number of glances contributes to those. In contrast, 

both glances contribute to the largest peak, since each of those was followed by a large 

change in the DPS sequence. This way, if the changes in driving performance typically 

occur at similar distances following the glances away from the road, this effect will be 

detected by the cross-correlation function. It is also worth noting that correlations of 

“distant” glances and changes in driving performance do not pose problems. The reason 

is that in reality the glances do not occur at the same locations, thus the influences of any 

“distant” correlations will be dispersed over many different lags and eventually 

eliminated (or at least attenuated) when multiple cross-correlation functions are averaged 

over multiple segments (as will be presented in the next section). 

3.1.4 Algorithm 

When performing driving-related experiments (although it can be generalized 

to any other type of experiment) the following requirements are needed for any 

estimation procedure: 

1. Should be performed over multiple participants. 
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2. Should be performed over multiple segments of road (or experiment epochs).  

3. Should provide estimates of statistical significance. 

The rest of this section addresses these requirements and presents the algorithm for 

implementing the proposed cross-correlation method. 

Estimating Cross-Correlation Results 
First, note that in the following, whenever possible, we will drop the discrete 

time variables ݈ܽ݃ and ݊. For example, ܴ௫௬ሾ݈ܽ݃ሿ and ݔሾ݊ሿ will become ܴ௫௬ and ݔ, 

respectively.  

In order to estimate ܴ௫௬ using either Equation 3.2 (cumulative) or Equation 3.4 

(per-glance), let us consider sequences ݔ and ݕ. The subscript ݅ designates the 

participant (݅ ൌ 1,… ,  who generated the data. The subscript ݆ designates the segment (ܭ

on which the glance data was collected (݆ ൌ 1,…  The subscript ݇ designates the .(ܯ,

segment on which the driving performance data was collected (݇ ൌ 1,…  When .(ܯ,

calculating ܴ௫௬ both ݔ and ݕ sequences have to originate from matched segments, 

thus ݆  ൌ  ݇. For a particular participant and segment, a peak in ܴ௫௬ at time ∆ܶ  ൌ  ݈ܽ݃ ·

௦ܶ can indicate deterioration in driving performance following the return of the gaze to 

the road. 

Once we calculate ܴ௫௬ for each participant and each segment we can turn to 

requirements 1 and 2 outlined above. To meet these requirements, we average the results 

of the cross-correlation calculation over all participants (requirement 1) and all segments 

(requirement 2) and of course we do this for each value of ݈ܽ݃. Note that averaging has to 



 

115 
 

take into account that segments may potentially be of different length ܰ. We only 

average ܴ௫௬ for values of ݈ܽ݃ that can be estimated for all segments. 

Figure 3.9 shows a pseudo-code (P-C.1) that implements the algorithm 

described above. First, we introduce the segment pointer sequences ܵ௫ and ܵ௬, which are 

used to select ݔ and ݕ from the appropriate road segments. For matched segment 

calculation, the two pointer sequences are the same and they select consecutive segments. 

Next, we calculate the cross-correlation functions for each participant and each segment 

using either Equation 3.2 or Equation 3.4 and then average the results over all 

participants and segments. Hence, we obtain one global cross-correlation function for all 

lag values of interest. When calculating the cumulative cross-correlation function, if the 

lengths of segments are different, Equation 3.3 can be used instead of Equation 3.2, since 

it introduces appropriate weighing for the segment length. 

 

Figure 3.9 Pseudo-code for estimating cross-correlation results. 

P-C.1: Pseudo-code for calculating cross-correlation results Rxy 
// cross-correlation averaged over all segments and participants 
 
segment pointer sequence Sx = {1,…,M} 
 
if matched segments for x and y 
  segment pointer sequence Sy = Sx 
else if mismatched segments for x and y (for statistical significance calculation,  
                                                                    see pseudo-code in Figure 3.10) 
  segment pointer sequence for Sy = permute(Sx) 
end 
 
for each participant pi, i = 1,…,K 
  for each segment  j = 1,…,M pointer from sequences Sx and Sy 
   Rij = xcorr(xiSx(j), yiSy(j))  //apply either Equation 3.2, Equation 3.3 or Equation 3.4  
  end 
end 
 
Rxy = average over all i,j of Rij 
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Estimating Significance of Cross-Correlation Results 
Our cross-correlation tool would not be very useful if it did not also estimate 

the statistical significance of its output (requirement 3). To this end we will use a 

randomization procedure similar to that employed by Veit et al. [117] as described in 

Section 2.4. The same procedure applies to both cumulative and per-glance cross-

correlation results. 

In testing statistical significance, our null hypothesis is that the values of the 

cross-correlation function at a particular lag (ܴ௫௬ሾ݈ܽ݃ሿሻ calculated using matched 

segments are due to chance. We can test this hypothesis by comparing the values 

ܴ௫௬ሾ݈ܽ݃ሿ to many (e.g. ܲ) cross-correlations between sequences with characteristics 

similar to ݔ and ݕ, but without any association to each other. To this end in the 

randomization process we use ݔ and ݕ sequences from mismatched segments. This 

approach produces sequences with identical characteristics to the ones used to calculate 

ܴ௫௬ሾ݈ܽ݃ሿ. Also, barring a problem with our experimental design, the ܲ calculations of 

ܴ௫௬ on mismatched segments are the results of chance and should indicate no association 

between the sequences. Realizing that larger cross-correlation magnitudes indicate higher 

association between the sequences, we can estimate the statistical significance of 

ܴ௫௬ሾ݈ܽ݃ሿ based on how its magnitude compares to the magnitudes of the ܲ values 

calculated using mismatched segments. 

Thus, our randomization procedure compares cross-correlations between eye-

glance and driving performance sequences (ݔ and ݕ) on matched segments (݆  ൌ  ݇) to 

those on mismatched segments (݆  ്  ݇). We can calculate ܴ௫௬ many (e.g. ܲ  ൌ  1,000) 

times using mismatched segments. Let us designate the resulting ܲ sequences as ܴ, 
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݉  ൌ  1,… , ܲ. We are interested in comparing the magnitude of ܴ௫௬ሾ݈ܽ݃ሿ (which was 

calculated using matched segments) to the ܲ ܴሾ݈ܽ݃ሿ values (mismatched segments). If 

ܴ௫௬ሾ݈ܽ݃ሿ is larger than the ሺߙ · ܲሻ௧-largest ܴሾ݈ܽ݃ሿ (we will refer to this as 

  ሾ݈ܽ݃ሿ), we can claim that ܴ௫௬ሾ݈ܽ݃ሿ is statistically significant with݃݅ݏ_ܴ ൏  ߙ where ,ߙ 

is a desired significance level and 0  ൏  ߙ  ൏  1. Thus, in rejecting the null hypothesis 

(which proposes that our estimate of ܴ௫௬ሾ݈ܽ݃ሿ is due to chance), the probability of 

making a Type I error is less than ߙ.  

As an example, for ܲ  ൌ  1,000 and ߙ  ൌ  0.05, if ܴ௫௬ሾ݈ܽ݃ሿ is larger than the 

50th ܴሾ݈ܽ݃ሿ value, we can claim that ܴ௫௬ሾ݈ܽ݃ሿ is statistically significant with   ൏  0.05 

(for this example, ߙ · ܲ  ൌ  0.05 · 1,000  ൌ  50). This is because our calculations of 

mismatched cross-correlations, which represent outcomes based on chance, produced 

magnitudes that are larger than or equal in magnitude to our ܴ௫௬ሾ݈ܽ݃ሿ in less than 5% of 

the cases (at most 49 out of 1,000). 

Figure 3.10 introduces pseudo-code (P-C.2) for calculating the values of ܴ_݃݅ݏ 

that designate the margin above which a value for ܴ௫௬ can be considered statistically 

significant. For each value of ݈ܽ݃ the code arranges ܲ cross-correlation values calculated 

using mismatched segments into descending order. This produces the sequences ܱሾ݈ܽ݃ሿ,  

  ൌ  1, …ܲ, with ଵܱሾ݈ܽ݃ሿ being the largest. Using ܱሾ݈ܽ݃ሿ we can easily find the 

ሺߙ · ܲሻ௧-largest value for ܴሾ݈ܽ݃ሿ: it is ܱሾ݈ܽ݃ሿ where ݍ  ൌ ߙ  · ܲ. Note that P-C.1 uses 

the segment pointer sequences ܵ௫ and ܵ௬ to create mismatched sequences. The sequence 

ܵ௬ is a permuted version of the sequence ܵ௫, with a different permutation for each 

݉  ൌ  1,… , ܲ. 



 

118 
 

For example, for ܲ  ൌ  1,000 and a desired significance of ߙ ൌ  0.05 we need 

to set ܴ_݃݅ݏሾ݈ܽ݃ሿ to the value of the 50th largest ܴሾ݈ܽ݃ሿ (because 0.05 · 1,000  ൌ  50). 

Thus, ܴ_݃݅ݏሾ݈ܽ݃ሿ  ൌ  ܱହሾ݈ܽ݃ሿ. If ܴ௫௬ሾ݈ܽ݃ሿ is larger than ܱହሾ݈ܽ݃ሿ, ܴ௫௬ሾ݈ܽ݃ሿ is 

statistically significant with    0.05. 

 

Figure 3.10 Pseudo-code for calculating statistical significance. 

3.1.5 Ranking Cross-Correlation Results 

The calculations of cumulative and per-glance cross-correlation results 

presented in the previous section can be applied to studies with either a single or multiple 

experimental conditions. In case of a single experimental condition, a significant cross-

correlation peak indicates the presence of the effect of looking away from the road on 

driving. Similarly, the same effect can be analyzed for multiple experimental conditions, 

where each would have a corresponding cross-correlation function and an estimate of 

significance. However, as proposed in hypothesis HRP, it may also be of interest to 

analyze whether the experimental conditions are significantly different from each other 

with respect to their cumulative and per-glance results, which would allow ranking. 

P-C.2: Pseudo-code for calculating statistical significance 
// values of Rxy(lag) > R_sig (lag) are statistically significant 
 
P = number of mismatched cross-correlations 
set α, 0 < α < 1 
set index q = α * P 
 
calculate P mismatched cross-correlations Rm, m = 1,…,P, using P-C.1 (Figure 3.9) 
 
for each lag 

  Oo(lag) = order values of Rm(lag) in descending order of magnitude, o=1,…,P, m = 1,…,P 
  R_sig (lag) = Oq(lag) // q is index based on significance level α 
end 
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According to HRP, this section presents two approaches that we can be taken 

here. We will explain each approach individually and then present a pseudo-code which 

will demonstrate how they can be used (see Figure 3.11). It can be argued that either 

approach is equally valid, thus observing the conclusions from both is likely the best 

solution. 

Extracting the Magnitudes of the Most Prominent Peaks 
The first approach is concerned with the difference that may exist specifically 

between the most prominent cross-correlation peaks (see for example Figure 3.20, pg. 

136). To generalize the approach presented in P-C.1 (Figure 3.9), besides the number of 

participants ܭ and the number of road segments ܯ, let us assume that there are also ܮ 

experimental conditions. Then, we can symbolically present the collection of all cross-

correlation functions (for all participants, segments and conditions) as ܴ , where 

݅ ൌ 1,… , ݆ ,ܭ ൌ 1,… ݈ and ܯ, ൌ 1,… ,  ,Equivalently, we can present the overall .ܮ

average cross-correlation function for each experimental condition as ܴ௫௬ . According to 

the algorithm presented in the previous section, each cross-correlation function for each 

experimental condition (ܴ௫௬ ) is obtained by averaging (per lag) a family of curves 

calculated for individual participants and road segments. This means that for any lag we 

can isolate a separate group of samples that belongs to each experimental condition. 

Specifically, we find a ݈ܽ݃ which corresponds to the most prominent peak in each of ܮ 

final cross-correlation functions (ܴ௫௬ ) and isolate up to ܭ ·  samples (number of ܯ

participants times the number of road segments) for each experimental condition 

(ܴ ሾ݈ܽ݃ሿ). This gives us ܮ groups of samples which can be compared statistically. 
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Extracting the Areas below the Cross-Correlation Curves 
The second approach is concerned with the difference that exists between 

experimental conditions over a range of lags as opposed to looking at a single lag. It can 

be termed as the “area below the curve” approach and was inspired by Strayer and Drews 

[60]. Namely, the authors quantified the amplitude of the P300 component of event-

related brain potentials for two experimental conditions by calculating the area below 

each P300 function. The area was calculated for a time interval which included the 

largest change in P300. This procedure was performed for each participant/experimental 

condition. Finally, they statistically compared the calculated areas between the two 

experimental conditions. Similar approach can be applied in our case as well. Namely, for 

a desired range of lags ሾ݈ܽ݃௦௧௧; ݈ܽ݃ௗሿ we can calculate the area below the cross-

correlation functions for each combination of experimental conditions, participants and 

segments (ܴ ሾ݈ܽ݃௦௧௧: ݈ܽ݃ௗሿ). As with the previous approach, this provides us with ܮ 

groups of areas below the curves which can be compared statistically. 

Common Statistical Analysis 
Previous two subsections presented two approaches which enable 

characterizing the cross-correlation results for each experimental condition. In this 

section we perform statistical analyses in order to evaluate whether significant 

differences exist between the experimental conditions. 

A data collection which holds either the magnitudes of the most prominent 

cross-correlation peaks or the areas below the curves for the specified range of lags can 

be symbolically presented as ܥ. For each ݈ ൌ 1,… ,  this data collection should contain ܮ

up to ܭ ·  entries. Once we have the data divided into separate groups (conditions), we ܯ
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can perform statistical comparisons between them, as proposed in HRP. In order to make 

this approach as universal as possible, we decided to use the Kruskal-Wallis test, which is 

a non-parametric version of the classical one-way ANOVA and an extension of the 

Mann-Whitney U test to more than two groups (since, in general, ܮ can be larger than 2). 

This way the procedure does not depend on the assumptions underlying the parametric 

methods and can accept the data which is not normally distributed, which makes the 

procedure applicable to a larger number of cases. If the Kruskal-Wallis test shows the 

existence of the main effect, we also perform post-hoc pairwise comparisons using the 

Wilcoxon test in order to determine the experimental conditions that are different from 

each other. If the pairwise comparisons demonstrate significant differences as well, we 

can conclude that the observed cross-correlation results are not only significant 

individually, but that they are also significantly different from each other. This ranking 

procedure can be applied to both cumulative and per-glance cross-correlation results. 

Figure 3.11 shows the pseudo-code which algorithmically outlines the steps 

described in the previous paragraphs. 
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Figure 3.11 Pseudo-code for testing statistically significant differences between 

experimental conditions. 

 

3.2 Studies Implementing Cross-Correlation Method 

This section gives a detailed description of two driving simulator studies which 

were used for testing hypotheses H1, H2 and HRP proposed in the introduction. For each 

study we present both the results obtained using our cross-correlation method, as well as 

using the average-based measures. This allowed for direct comparison between the two 

approaches. Furthermore, we analyze the subjective estimates of cognitive load and 

provide comparisons with those as well.  

P-C.3: Pseudo-code for testing statistical difference between experimental conditions 
//set these two variables if the desired approach is area under the curves 
set ݈ܽ݃௦௧௧ 
set ݈ܽ݃ௗ 
 
for l = 1,…,L 
 lag = find the lag of the most prominent peak for ܴ௫௬  
 for i = 1,…,K 
           for j = 1,…,M 
                     if Approach == ‘compare peaks’ 
                                      set peak = ܴ ሾ݈ܽ݃ሿ 

append peak to ܥ 
       else if  Approach == ‘compare areas’ 
   set area = calculate area below ܴ ሾ݈ܽ݃௦௧௧: ݈ܽ݃ௗሿ 

append area to ܥ 
                            end 
           end 
 end 
end 
 
main_effect = Kruskal-Wallis (ܥ), l=1,…,L 
post_hoc = Wilcoxon pairwise comparisons (ܥ), l=1,…,L 



 

123 
 

3.2.1 Exploring Augmented Reality Navigation Aids 

This study ([36] © 2011 Association for Computing Machinery, Inc. Reprinted 

by permission) was oriented towards predominantly visual in-car interactions (listening to 

voice directions was also involved) and it compared a standard map-based PND (SPND) 

with two emerging navigation aids: augmented reality (AR) and street view (SV).  

 

Figure 3.12 AR navigation aid shown from driver’s perspective. 

AR (Figure 3.12) overlays a semi-transparent navigation route directly on the 

windshield, thus not requiring drivers to take their eyes off the road in order to obtain 

navigation information. In our driving simulator, the navigation route was projected onto 

simulator screens, which created an illusion of it being displayed on the windshield. 

Therefore we can say that it uses full windshield as a head-up display (HUD). The 

navigation route was suspended above the center of the road at a height of about 2 

meters. This produced the visual effect of a navigation route hovering above the vehicle, 

similar to the Virtual CableTM [127].  

SV (Figure 3.13) navigation has been made possible through the proliferation 

of smart phones and online resources, which provide street level views of the roads 

(similar to the Google Street View [128]).  
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Figure 3.13 SV navigation aid displayed on LCD. 

It presents a sequence of images of the surrounding world taken from the driver’s 

perspective (egocentric view). This sequence is augmented with a translucent, wide, road-

level surface which represents the navigation route. We decided to use this road-level 

surface because of its similarity to commercially available HDD-based PNDs (such as 

[128]). The images were shown on a head-down display (HDD) and they were changing 

as the driver advanced through the world. In reality, SV would use images taken at a prior 

time. This was faithfully simulated in our study by another driving simulator which was 

running in parallel with the one operated by the participants. Specifically, static entities 

(such as signs and buildings) were the same in both simulations, while the vehicles 

(parked and moving) and pedestrians were different. A new image was displayed on LCD 

every 15 meters, which is approximately the distance used in Google Street View. 

Finally, SPND (Figure 3.14) represents a common map-based navigation 

device with an exocentric, “top-down” view. It was also presented on an HDD. The small 

green triangle visible in Figure 3.14 indicates the current position of the car and it always 

remained in the center of the screen, while the map rotated about it. The pink line 

indicates the navigation route. The main reason for including an SPND in our experiment 
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is their common presence in vehicles nowadays. Thus, any observed differences between 

the PNDs on test would be the easiest to characterize with respect to SPND. 

 

Figure 3.14 SPND navigation aid displayed on LCD. 

Since most contemporary PNDs enable voice directions, we decided to include 

identical turn-by-turn directions for all three PNDs in our experiment. The directions 

were prerecorded by a voice talent in order to eliminate potential problems with the 

comprehension of synthesized speech [14]. 

Figure 3.15 shows how the experimental setup looked like inside the cabin. 

 

Figure 3.15 Experimental setup inside the simulator cabin. 
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The LCD screen (HDD) was placed on top of the dashboard and it was used by 

both SV and SPND navigation aids. The eye-tracker was also used in this study. A 

camcorder was installed on the far right side of the dashboard, which was used for the 

manual transcription in the rare circumstances when the eye-tracker did not see the 

driver’s eyes. 

Method 
We chose a within-subjects factorial design experiment with navigation type 

(nav) as our independent variable. We collected multiple dependent variables: PDT on 

the road ahead, number of collisions with other objects in the simulated world, NASA-

TLX score, level of agreement with preferential statements (2 preferential statements 

using 5-point Likert scales) and average-based driving performance measures expressed 

through variances of lane position, steering wheel angle and velocity. In each case, higher 

values of driving performance measures indicate deterioration. We also calculated 

average velocity. All driving performance variables were obtained from the simulator at a 

frequency of 10 Hz, while the eye-tracker data was obtained at 60 Hz. 

As shown in Figure 3.16, participants drove on two lane city roads which 

included ambient vehicles (about 6 vehicles per street segment), moving pedestrians, 

traffic signs and lane markings. Lanes were 3.6 meters wide. Participants were instructed 

to drive as they normally would in real life and to obey all traffic laws. They were also 

instructed (and trained) to pay attention to unexpected events, such as pedestrians 

emerging from behind parked vehicles (Figure 3.16) or vehicles braking suddenly. These 

unexpected events are not uncommon in city driving. Furthermore, the ability to avoid 
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collisions when such unexpected events occur is a valuable (although coarse) measure of 

driving performance. 

 

Figure 3.16 Simulated two-lane city road with a pedestrian emerging from behind a 

parked vehcle. 

For all three PNDs, the participants drove a different route with two 

unexpected events in each case. Figure 3.17 shows the whole navigation route (solid red 

line), road segments selected for the analysis (dashed red lines in the zoomed-in areas), 

locations of the unexpected events (numbers 1 and 2), start/end locations (green 

hexagons) and side streets (thin, solid blue lines). The first route included traveling from 

north to south. For the second route we reversed the direction of travel (south to north), 

while the third route was the mirror image of the first route. In short, all three routes were 

of the same length (about 10 km) and complexity. However, the turn-by-turn directions 

for each route were different. Thus, there was no risk of participants remembering 

navigation instructions from the previous route. All intersections along the charted route 

were either T or four-way intersections. This required the participants to listen (if they 

chose not to look at the screen) the whole voice direction in order to be able to decide 

which way to turn. Each route had both long (400 and 800 meters long) and short (200 
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meters long) segments with many intersections on the given path. On average it took 

about 15 minutes to traverse a route. The presentation order of the routes was the same 

for all participants. A total of 18 participants (average age 20.5) took part in the 

experiment.  

 

Figure 3.17 Simulated route with the segments selected for analysis. 

The city routes in this experiment can be broken up into segments by treating 

roads between two intersections as separate segments. We calculated all of our driving 

performance (except the number of collisions) and visual attention results from 13 short 

segments (dashed red lines in Figure 3.17). All 13 short segments had the same 

characteristics, thereby controlling factors that could potentially confound our results. In 
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particular, the segments were 200 meters long measured from the centers of the adjacent 

intersections. The participants did not encounter any unexpected events (represented by 1 

and 2 in Figure 3.17) in the 13 segments we used to analyze visual attention and driving 

performance. Unexpected events often require sudden braking and steering wheel motion, 

which in turn can result in very large first differences and variances for these measures, 

making comparisons with other segments difficult. For the purpose of counting the 

number of collisions only, we used 15 short segments, including the ones with 

unexpected events, since collisions are more likely to occur there.  

In analyzing all of the segments, we excluded data collected over the first 60 

meters and the final 40 meters of a segment, and analyzed data generated over (200–60–

40) = 100 meters. This was done because driving performance tends to be different 

between the excluded and analyzed portions of the segments. For example, at the 

beginning of a segment, drivers are completing the turning maneuver that is necessary to 

get through the previous intersection. At the end of a segment, they are decelerating 

before entering the next intersection and possibly even approaching one of the sides of 

the lane depending on the direction of the upcoming turn. Thus, the resulting variances 

can be much larger than those encountered away from intersections, which makes it 

difficult to compare excluded and analyzed portions of segments.  

After filling out the consent forms and personal information questionnaires, 

participants were given an overview of the driving simulator and descriptions of the three 

navigation devices. Next, they proceeded to complete three navigation experiments, one 

with each of the PNDs. Before each condition, we provided the participants with about 5 

minutes of training using that PND. For training, users followed PND navigation 
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instructions in a city environment similar to the one experienced during the real 

experiment. In order to circumvent order effects, we counterbalanced the presentation 

order of the PNDs between participants. 

General Results 
Table 3.1 describes visual attention directed towards the road, LCD screen and 

the rest of the cabin. Note that the results presented here regarding visual attention may 

differ slightly from the results published in [36]. The reason is that the current results are 

obtained after applying the glance filtering procedure described in Section 3.1.2 (pg. 97), 

while the raw eye-tracker data was used in study [36]. Overall, the differences are very 

small and did not affect the outcomes of the statistical analyses.  

 AR SV SPND p-value 

road 96.48 86.69 89.38 <0.0001 

LCD  9.77 7.19 <0.0001 

cabin 3.27 3.01 2.96 0.798 

Table 3.1 PDT on the road, LCD and the rest of the cabin as a function of PND type. 

A repeated-measures ANOVA revealed a significant main effect of the 

navigation type on PDT on the road (F(2,34)=83.789, p<0.0001). Post-hoc comparisons 

indicated significant differences between all pairs: AR and SPND (p<0.0001), AR and 

SV (p<0.0001), and SV and SPND (p=0.003). We can see that the overall PDT on the 

road was 96.48%, 89.38% and 86.69% for AR, SV and standard PND, respectively. The 

difference of 9.79% between AR and SV indicates that on average for every minute of 

driving drivers spent about 5.87 seconds less looking at the road in case of SV PND. 

What is very interesting to note is that SV required even more visual attention than the 
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SPND. This was corroborated by a repeated-measures ANOVA with PND on the LCD as 

a dependent variable comparing SV and SPND in isolation. Again, a significant 

difference was detected (F(1,17)=21.391, p<0.0001). We also confirmed that PDT on the 

rest of the cabin was not significantly affected by the PND type (p=0.798).  

To closer investigate the effects on visual attention, we calculated the number 

and duration of off-road glances for each PND. The left graph of Figure 3.18 shows the 

average glance duration, while the right graph shows the average number of glances. 

Since more than one glance may occur on each segment, we aggregated all off-road 

glances for each of the PNDs and performed statistical analysis using a one-way 

ANOVA. The analysis revealed a significant main effect (F(2,759)=12.6036, p<0.0001) 

of navigation type Nav on glance duration. Post-hoc comparisons indicated significant 

differences between all pairs: SPND and AR (p<0.0001), SV and AR (p=0.0029) and 

SPND and SV (p=0.0324). As we can see in the left graph of Figure 3.18, the average 

glance durations are 0.45, 0.58 and 0.53 seconds for AR, SPND and SV PND, 

respectively. 

We applied the same procedure for the number of glances directed off-road as 

well, since we wanted to use the same statistical methods for the same family of 

variables. A one-way ANOVA indicated a significant main effect of navigation type 

(F(2,690)=115.3878, p<0.0001). Pairwise comparisons revealed significant differences 

between all pairs (p<0.0001). The right graph in Figure 3.18 shows the average number 

of glances to be 0.48 (AR), 1.22 (SPND) and 1.6 (SV). 
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Figure 3.18 Average duration (left) and number (right) of glances directed off road for 

the three PNDs per segment. 

Since the nature of the AR PND is such that the participants did not have to 

look away from the road to obtain navigation directions, segments without off-road 

glances often occurred in this condition. Even though ANOVA is robust to departures 

from normality (especially with large data samples), we intended to take a conservative 

approach and also conducted the analyses of the number of glances using a non-

parametric Kruskal-Wallis test, which does not require the assumption of normal 

distribution. To be consistent, we also performed the non-parametric analysis in case of 

glance durations, as well. The results entirely match the ones obtained using a one-way 

ANOVA. Namely, significant main effects of the navigation type have been observed for 

both number of glances and glance duration: χ2=197.7495, p<0.0001 and χ2=33.8531, 

p<0.0001, respectively. If we look at pairwise comparisons (using a Wilcoxon Signed 

Ranks test), significant differences for number of glances have been observed between all 

pairs (p<0.0001). Similarly, in case of glance duration we observed significant 

differences between all pairs: SV and AR (p=0.0003), SPND and AR (p<0.0001) and 

SPND and SV (p=0.002).  
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Subjective estimates of cognitive load were estimated using NASA-TLX 

questionnaire. Users' average NASA-TLX ratings were 28.7, 38.7 and 33.4 for the AR, 

SV and SPND, respectively. We performed a one-way ANOVA to examine the effect of 

PND on these subjective workload ratings. Our analysis revealed a significant main effect 

of Nav on workload (F(2,24)=6.759, p=0.005). Post-hoc comparisons indicated that 

participants experienced significantly less load using the AR than the SV PND 

(p<0.0001). No difference was observed between SV and SPND (p=0.136). Even though 

the difference between AR and SPND (p=0.097) is not significant at the 0.05 level, it is 

significant at the 0.1 level, so we can conclude that a strong trend exists. 

Using 5-point Likert scales participants indicated their level of agreement 

(highly agree, agree, undecided, disagree, highly disagree) with two preferential 

statements presented in Table 3.2. The numbers shown under AR, SV and SPND 

columns specify the percent of participants who highly agreed/agreed (white cells) or 

highly disagreed/disagreed (shaded cells) with each statement. Note that the percentages 

do not always sum up to 100% since some participants were undecided. For each 

statement we performed a Friedman non-parametric test with respect to Nav. 

Statement Agreement AR [%] SV [%] SPND [%] p ( χ²) 
My driving was 
best when using 
[AR/SV/SPND] 

interface. 

highly agree or 
agree 72.2 11.1 38.9 0.014 

(8.49) highly disagree 
or disagree 16.7 61.1 50 

I prefer to have a 
[AR/SV/SPND] 
for navigation. 

highly agree or 
agree 66.7 22.2 38.9 0.023 

(7.53) highly disagree 
or disagree 16.7 72.2 27.8 

Table 3.2 Level of agreement with two preferential statements. 
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Table 3.2 shows a significant main effect of Nav on the subjective judgment 

about best driving performance (p=0.014). Participants ranked AR PND very highly 

(72% highly agreed or agreed) in comparison to others, while both SV and SPND were 

perceived as detrimental to driving (61% and 50% disagreed or highly disagreed, 

respectively). Using the Wilcoxon Signed Ranks test for pairwise comparisons, we found 

significant differences between AR and SPND (p=0.027) and AR and SV (p=0.003). 

Clearly, most participants felt that the AR PND allowed for the best driving performance. 

A significant main effect of the navigation type on the subjective preference 

for a particular PND was detected (p=0.023). Responses to this preferential statement in 

Table 3.2 indicate that participants liked the AR PND. Using the Wilcoxon Signed Rank 

test, we found that participants significantly preferred the AR PND to both the SV 

(p=0.007) and SPND (p=0.045) and that participants significantly preferred the SPND 

over the SV PND (p=0.038). 

Based on the visual attention results, we can say that, as expected, HUD-based 

AR PND allowed users to keep their eyes on the road more than the HDD-based SPND 

and SV PND. This result was also supported by the NASA-TLX scores which showed 

that participants found the SV PND more difficult to use than the AR PND. The fact that 

we observed a difference in PDT between SV and SPND suggests that PDT is not solely 

a function of display modality. Rather, it is likely that participants found it difficult to 

resolve differences between the real world and SV images. This explanation is supported 

by the significantly more frequent glances (p<0.0001) at the LCD display in the SV 

condition than with the SPND (1.25 and 0.87 glances on average, respectively). 

Subjective assessments also support this explanation.  



 

135 
 

There were no collisions with pedestrians or ambient traffic for any PND on 

segments without unexpected events. There were 8 collisions in total with vehicles on 

segments with unexpected events: 2 for AR, 3 for SV and 3 for SPND. Clearly, the 

occurrence of collisions did not depend on the PND type. 

Despite all of the observed differences in visual attention and subjective 

assessments, we found no significant differences between the three PNDs regarding any 

of the average-based driving performance measures (in all cases p>0.05). Figure 3.19 

shows the average variances calculated for lane position (upper left), steering wheel angle 

(upper right) and velocity (bottom left) as well as the average velocity (bottom right). 

This suggests that any distractions by these PNDs were not high enough to be detected 

using long-term averages of driving performance measures. 

Figure 3.19 Average variances of lane position (upper left), steering wheel angle (upper 

right) and (bottom left) and average velocity (bottom right). 
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Cross-Correlation Results 
Figure 3.20 shows the cumulative cross-correlation functions (obtained using 

the Equation 3.2) for all three navigation devices when the steering wheel angle was used 

for calculating the driving performance sequence (DPS).  

 

Figure 3.20 Cumulative steering wheel angle cross-correlation functions calculated for 

AR, SV and SPND.  

Similarly, Figure 3.21 depicts the same cumulative cross-correlation functions 

except that the DPS sequence was obtained using the lane position. In both figures, solid 

lines represent cross-correlation functions, while the dotted lines indicate the significance 

levels of p=0.05 obtained using the randomization method described in detail in section 

3.1.4 (pg. 113). The significance level of 0.05 is commonly used among researchers and 

it is applied for other analyses in this dissertation. Therefore, we decided to apply the 

same significance level in all of the following figures for the purpose of establishing the 

significance of the cross-correlation peaks. A separate significance level was calculated 

for each device.  
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Figure 3.21 Cumulative lane position cross-correlation functions calculated for AR, SV 

and SPND. 

Before we continue with the analysis of the results, we have to make two 

notes. First, in this experiment the overall segment durations were relatively short (about 

7 seconds), relative to the maximum evaluated lag of 5 seconds. Thus, the calculated 

cross-correlation functions have the observed tendency to decrease with lag due to the 

decreasing overlap between the EGS and DPS sequences (see Equation 3.2). And second, 

even though the graphs presented in Figure 3.20 and Figure 3.21 have the same shapes as 

the ones published in [36], the orders of the magnitudes differ. The reason for this is a 

different normalization scheme which was applied in [36]: the cross-correlation result 

was normalized by the number of samples of each experimental segment which was used 

in the calculations (about 70 samples/segment). Furthermore, in this dissertation we use 

the AVC function to transform each DPS sequence. This produces the true absolute first 

difference as opposed to just absolute first difference used in [36]. Since we employed 
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the sampling interval of 0.1 second, it introduces a normalization factor of 10 (1/0.1) 

compared to absolute first difference (see Equation 3.1). Therefore, the overall 

normalization factor which accounts for the difference between the results presented here 

and in [36] is about 700. 

As we can see in Figure 3.20 there are statistically significant peaks in 

ܴ௦௪ሾ݈ܽ݃ሿ for all three PNDs, at the p=0.05 level. The most prominent peaks appear at the 

lag of 0.6 sec for all three PNDs. These peaks indicate that on average, the periods of 

looking away from the road ahead are followed by a larger change in the steering wheel 

angle (possible corrective actions) than in usual circumstances. Note that there is also a 

significant peak for AR. Even though in case of AR navigation the participants did not 

have a specific device to look at, the occurrence of this peak is sound, since the 

participants cast occasional glances towards the speedometer, steering wheel or 

dashboard. Nevertheless, its magnitude is much smaller compared to SV and SPND. 

Similarly, Figure 3.21 shows the most prominent peaks for ܴሾ݈ܽ݃ሿ at the lag of 0.6 sec 

for SV and SPND and at 0.8 sec for AR.  

Significant peaks that occur far from the edge of the glance (located at the lag 

of 0 seconds) are due to the nature of the cross-correlation formula where glances 

separated in time may get correlated with each other’s effects on driving performance (as 

described in Section 3.1.1, pg. 111). There are two very good examples at the lags of 1.4 

and 2.6 seconds in the case of ܴ௦௪ for SV PND. If we take into account that the average 

separation between falling edges of glances for SV PND is 0.97 seconds and using the 

finding that the largest changes occur on average 0.6 seconds after the glance, we would 

expect that the average separation between one glance and a change in driving 
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performance coming from another glance should be about 0.97 + 0.6 = 1.57 seconds. 

This matches very well with the distant cross-correlation peak observed at 1.4 seconds. 

The lag at 2.6 seconds is even further away from the edge of the glance and it is a very 

long time interval while driving, during which accidents may occur unless the driver 

timely applies a necessary action. Specifically, at the speed of 35 MPH, which was the 

posted speed limit in this experiment, the car would have travelled 40.67 meters in 2.6 

seconds. Therefore, any necessary action will likely be applied sooner. Additionally, both 

of these peaks have much smaller magnitudes compared to the highest peak at 0.6 

seconds. 

In the previous paragraphs we showed that each of the most prominent cross-

correlation peaks are significant at the level of p=0.05. However, another question that 

can be asked here is whether the peaks among different PNDs are significantly different 

as well. Since in this case we have individual cross-correlation functions for each 

navigation device, we conducted statistical comparisons using the two approaches 

presented in Section 3.1.5 (pg. 118). Table 3.3 shows the results of the analysis. There are 

two main columns in the table: the left column shows the results obtained by comparing 

the most prominent cross-correlation peaks only, while the right column compares the 

areas under the curves for a range of lags (specifically, from 0 to 1 second). Also, two 

main rows indicate the specific cumulative cross-correlation functions that are being 

compared: steering wheel angle or lane position. Bolded values indicate significant 

differences at the specified level. There was a significant main effect (p<0.001) of the 

navigation type (Nav) for each approach, thus allowing us to perform pairwise 

comparisons. Similarly, pairwise comparisons also revealed significant differences 
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(p<0.001) between all three PNDs. If we look at the results of both approaches in concert, 

we can conclude that the effect of using the three PNDs exists not only where the most 

prominent peaks occur, but also over the range of lags surrounding the peaks. 

 Comparing Highest Peaks Comparing Areas Below Curves 

C
um

ul
at

iv
e 

st
ee

ri
ng

 w
he

el
 

an
gl

e 
cr

os
s-

co
rr

el
at

io
n 

Main effect of Nav p < 0.001 Main effect of Nav p < 0.001 

Pairwise comparisons Pairwise comparisons 

SV-AR SV-SPND AR-SPND SV-AR SV-SPND AR-SPND

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

C
um

ul
at

iv
e 

la
ne

 
po

si
tio

n 
cr

os
s-

co
rr

el
at

io
n 

Main effect of Nav p < 0.001 Main effect of Nav p < 0.001 

Pairwise comparisons Pairwise comparisons 

SV-AR SV-SPND AR-SPND SV-AR SV-SPND AR-SPND

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

Table 3.3 Statistical comparisons between cumulative cross-correlation results for three 

PNDs. 

Since the significant differences have been observed between the magnitudes 

of the most prominent cross-correlation peaks, we can now rank the size of the effect for 

the three PNDs. For example, in the case of cross-correlations calculated for steering 

wheel angle, we can see that an average cumulative effect of glances directed off-road 

contributes to an absolute change (AVC) on the steering wheel amounting to 10.65, 7.53 

and 2.682 degrees/second for SV, SPND and AR, respectively. If we use AR as the 

reference, we can see that the cumulative effect of looking away from the road in case of 

SV is 10.65/2.682 = 3.97 times higher relative to AR. Similarly, the cumulative effect in 

case of SPND is 7.53/2.682 = 2.81 times higher relative to AR PND. 
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Both Figure 3.20 and Figure 3.21 demonstrate that the effect size is the 

smallest for the AR and the largest for the SV. The relatively large difference in effect 

size between AR, on the one hand, and SV and SPND on the other might be attributed to 

the difference in display type: HUD for AR vs. HDD for SV and SPND. However, we 

also see that the cross-correlation peaks for SPND are consistently smaller than for SV. 

This indicates that resolving differences between SV images and the observed world may 

be cognitively taxing (certainly time consuming), even more so than receiving directions 

from a 2D map. Note that our simulated world and SV images were very similar, as the 

season, the weather and the time of day were identical in the two simulations that 

generated these images. In the real-life scenarios these variables are likely to be different 

between the outside world and street view data. Thus, the observed separation in the 

cross-correlation results may be emphasized even further in real-life conditions.  

If we look at the way cross-correlation function is calculated (Equation 3.2), it 

represents a combination of both driving performance and visual attention measures. 

Since both of these measures are manifestations of cognitive load, it is of interest to 

observe how the cross-correlation results compare to other estimates of cognitive load. 

The cross-correlation function defined in Equation 3.2 provides a cumulative effect of 

interacting with the three PNDs. Thus, it would be the most appropriate to perform the 

comparison with another measure that provides an overall estimate of cognitive load. It is 

for this reason that we decided to use the results obtained from the NASA-TLX 

questionnaire. Figure 3.22 shows strong positive relationships between prominent peaks 

in both cumulative ܴ௦௪ and ܴ and NASA-TLX results.  
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Figure 3.22 Magnitudes of prominent peaks in cumulative Rsw (upper graph) and Rlp 

(lower graph) vs. NASA-TLX score for AR, SV and SPND. 

A simple linear fit in both cases revealed very high coefficients of 

determination (ܴଶ  0.97). This is an important result, since it indicates that both the 

cumulative cross-correlation peaks and the subjective estimates of cognitive load point to 

the same conclusion regarding the three PNDs: AR is perceived as the one with the 

smallest impact on cognitive load, followed by SPND and SV PNDs. 

In Section 3.1.1 (pg. 109) we also presented a modified cross-correlation 

definition (Equation 3.4) which allows us to estimate the average change (AVC) in 

driving performance measures after looking away from the road per individual glance. 
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Figure 3.23 and Figure 3.24 show per-glance cross-correlation functions obtained for the 

three PNDs for steering wheel angle and lane position, respectively. The results observed 

in these figures are very important, because they indicate that significant effects of 

individual glances directed off-road exist besides the cumulative effects. 

 

Figure 3.23 Per-glance steering wheel angle cross-correlation functions calculated for 

AR, SV and SPND. 
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Figure 3.24 Per-glance lane position cross-correlation functions calculated for AR, SV 

and SPND. 

In Figure 3.23 we can see that significant per-glance steering wheel angle 

cross-correlation peaks exist for all three PNDs at the lag of 0.6 seconds. Similarly, 

Figure 3.24 shows significant per-glance lane position cross-correlation peaks at the same 

lag for SV and SPND. No significant peak is detected for AR PND (although the most 

prominent peak at 0.8 seconds is just below the significance level). Even though visual 

attention to the road was very high for AR PND (96.48% PDT to the road ahead), the 

influences of individual glances were still detected by the per-glance steering wheel angle 

cross-correlation (notice that the highest peak is above the significance level). However, 

this was not the case for per-glance lane position cross-correlation. This difference in the 

observed effect can be attributed to the difference in dynamics that exists between lane 

position and steering wheel angle: faster dynamics in case of steering wheel angle and 

slower in case of lane position. This is very obvious if we look at example amplitude 

spectra of both variables based on the real data from this study. Figure 3.25 shows the 

0 1 2 3 4 50.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

lag [sec]

R
lp

 [m
et

er
s/

se
co

nd
]

 

 

AR
p = 0.05 for AR
SV
p = 0.05 for SV
SPND
p = 0.05 for SPND



 

145 
 

raw data, while Figure 3.26 shows the amplitude spectra for lane position and steering 

wheel angle for one example experimental segment. 

 

Figure 3.25 Example raw data for lane position and steering wheel angle. 

We can see that lane position is dominated by low frequencies (f < 0.5 Hz), while 

steering wheel angle has a considerable frequency content beyond 0.5 Hz as well. 

 

Figure 3.26 Amplitude spectra for example lane position and steering wheel angle data. 
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Table 3.4 shows the statistical comparisons between the per-glance cross-

correlations for the three PNDs.  

 Comparing Highest Peaks Comparing Areas Below Curves 
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Table 3.4 Statistical comparisons between per-glance cross-correlation results for three 

PNDs. 

We can see that a significant main effect of Nav is detected (p=0.0485) in case 

of per-glance steering wheel angle cross-correlation when comparing the magnitudes of 

the most prominent peaks. After performing pairwise comparisons a significant 

difference is detected between SV and AR (p=0.0126), although the difference between 

AR and SPND (p=0.1376) is close to the significance level of 0.1. The area below the 

curves approach also detected a significant main effect of the navigation type (p=0.0043), 

while the pairwise comparisons detected differences between SV and AR (p=0.0013) and 

AR and SPND (p=0.0101).  

Neither approach indicated the existence of the main effect of navigation type 

in case of per-glance lane position cross-correlation results, which is not surprising given 

the large overlap between the curves that can be seen in Figure 3.24. However, it is still 
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important to notice that significant peaks exist in case of SV and SPND, which indicates 

that the effects of individual glances directed off-road do exist, even though they are not 

different between the two PNDs. 

There are two important findings resulting from the per-glance steering wheel 

angle cross-correlation results. First, we can see that a significant peak exists for all three 

PNDs indicating that significant effects of individual glances directed off-road exist in 

each case. The largest influence occurs right after the gaze moves back to the forward 

road, even though this effect was not obvious through average-based measures. And 

second, the observed differences between SV and AR and SPND and AR indicate that 

average glances directed off-road in case of SV and SPND influence driving and 

cognitive load more compared to AR PND.  

The lack of significant difference between SV and SPND in case of per-glance 

steering wheel angle cross-correlation is not that surprising given the large overlap that 

can be seen between the two in Figure 3.23. This result indicates that SV and SPND are 

not very different when observed from the standpoint of an individual glance (instance of 

interaction). However, we can argue that more instances of interaction (glances directed 

off-road) in case of SV (1.6 glances) compared to SPND (1.22 glances) contributed to the 

observed difference in the cumulative results. 

3.2.2 Highway Driving and iPod Interactions 

In order to investigate how the situation would change for different driving 

environment and interaction modality, we conducted a study with another popular in-

vehicle device: the iPod. One reason we selected this particular device is that some 
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negative effects of using an MP3 player on driving have been documented in the research 

literature. For example, Salvucci et al. [18] looked at driving performance degradation 

while choosing music, podcasts and videos on a fifth generation iPod. The study found 

that selecting media while driving significantly affected both lateral and speed deviation. 

We expected to observe similar results in our study as well. However, if participants 

interact with the MP3 player infrequently over the course of an experiment, and/or if the 

individual interactions are short, based on the previous experience, we expected that the 

negative influence on driving performance might be difficult to demonstrate by observing 

average-based driving performance measures. 

 

Figure 3.27 Experimental setup inside the simulator cabin. 

We used an iPod Nano device as our MP3 player. As shown in Figure 3.27 the 

iPod was attached to a board on the right side of the steering wheel. We decided to place 

the iPod in a fixed location, so that all drivers would experience the same experimental 

setup. This location allowed for very easy manual access and required a small change in 

eye gaze direction away from the roadway, compared to when the player is held in the 

hand or placed anywhere else on the central console. For example, Salvucci et al. [18] 
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located their iPod in a holder mounted fairly low on the central console. Thus, it is 

possible that the effects of iPod interactions we are about to present here would have 

been even larger had we decided to use the same location. The iPod was also connected 

to the simulator’s speakers, so the drivers were able to hear the songs they were asked to 

play. A total of 12 participants (average age 21.5) participated in the experiment. 

Method 
As a primary task, the participants were instructed to follow a yellow lead 

vehicle travelling at 55mph (88.5km/h) (see Figure 3.27). The road was a straight portion 

of a divided highway with three lanes in each direction, each 3.6 meters wide. Both the 

lead and the participant vehicle were travelling in the middle lane. Roads were presented 

in daylight with light (approximately 1 vehicle every 2 seconds), random ambient traffic 

in the other two lanes. Participants were instructed to drive as they normally would and to 

obey all traffic laws. 

In addition to the primary task, the participants experienced three conditions 

describing their engagement in the secondary task of interaction with the iPod: 

1. No secondary task - baseline (B). In this condition participants did not have any 

additional task. Their only concern was to follow the lead vehicle while driving 

safely.  

2. Easy iPod interaction (E). In this condition the participants were given a number 

of simple operations to perform on the iPod. These operations included: selecting 

a menu option, playing the previous, current and next song, pausing, 

increasing/decreasing volume and fast-forwarding a song (Figure 3.28). All 

participants completed the same 10 operations in the same order. Individual 
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interactions were initiated automatically by custom software. Every 40 seconds 

the participant heard a voice prompt by the computer to perform an interaction. 

We decided to initiate interactions every 40 seconds in order to allow enough time 

for participants to complete the previous interaction, as well as enough down-time 

between individual interactions. As we can see in Figure 3.28, most actions 

required simple clicks on one of 5 available buttons. Increasing/decreasing 

volume and rewinding/advancing a song also required short scrolling.  

 

Figure 3.28 iPod interactions participants performed during the experiment. 

3. Difficult iPod interaction (D). Under this condition participants were given the 

name of a song (by a computer voice) which they needed to locate in the list of all 

songs preloaded on the device and play it. The iPod contained a total of 347 

songs, which were sorted alphabetically by title. They had to search for 10 songs 

during the experiment. These songs were given to the participants in alphabetical 
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order, so that they would need to scroll only in one direction to find the next one. 

This simplified the task somewhat, since changing the direction of the search is 

much more challenging. The titles of the sought songs were distributed 

approximately uniformly throughout the list, so the participants would experience 

the same level of difficulty when searching for each song. Specifically, they had 

to scroll on average 36 songs from the current one in order to find the next song 

(range of scrolling = [33; 42], SD = 2.71). If the rotation is performed relatively 

slowly (for example, one 360° turn per 1 second), one 360° turn moves the 

selection pointer about 16 songs (this is important to notice, since faster rotation 

exponentially increases scrolling speed). The names of the songs as well as their 

order were the same for all participants. The interaction timing followed the same 

pattern as for the easy task: a new task was initiated every 40 seconds. 

We conducted a within-subjects factorial design experiment with the 

interaction type as our primary independent variable, Int. The levels of this variable were: 

no secondary task - baseline (B), easy iPod task (E) and difficult iPod task (D). The order 

of Int was counterbalanced among the participants. We measured the following 

dependent variables: PDT on the forward road, average glance duration, average number 

of glances, average driving performance measures expressed through the variances of 

lane position, steering wheel angle and velocity, average velocity and subjective 

estimates of cognitive load based on NASA-TLX score.  

Our experiment presented participants with straight highway routes. We broke 

up the routes into segments by treating parts of the highway where participants engaged 

in the secondary task as separate segments. Since there were 10 interactions in total (for E 
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and D conditions) and for each interaction the participants had a maximum of 40 seconds, 

we calculated all of our dependent variables using data from those 10 segments. Even 

though the baseline (B) condition did not employ any interactions, the segmentation was 

possible by dividing the experiment into ten, 40-second-long segments. This allowed for 

direct comparison between the three conditions. All segments had the same 

characteristics, thereby controlling factors that could potentially confound our results. In 

particular, the segments were relatively long, at about 924 meters. 

General Results 
To assess the effect of secondary task complexity on visual attention, we 

performed a repeated measures one-way ANOVA using PDT on the forward road as the 

dependent variable. As expected, we found a highly significant main effect 

(F(2,22)=108.991, p<0.0001) (see Figure 3.29). In addition, all the post-hoc pair-wise 

comparisons between baseline, easy and difficult conditions were also highly significant 

(for all pairings p<0.0001). The average values of PDT for the three levels of Int showed 

large differences: B – 94.62%, E – 85.12% and D – 72.98%. For the difficult task this 

would amount to spending 16.21 seconds of every minute not looking at the road ahead. 

The same measure for the easy task would be 8.93 seconds, while for the baseline it 

would amount only to 3.23 seconds of inattention to the roadway for each minute of 

driving. These results show that the drivers kept their visual attention focused 

significantly more on the inside of the car (and away from the roadway) as the secondary 

task got more complex. This can be explained with the fact that more difficult iPod tasks 

demanded more visual attention. 
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Figure 3.29 Average PDT on the forward road. 

To obtain more fine-grained information pertaining to visual attention, we 

calculated the average duration and number of glances directed away from the road for 

each interaction type. As in the previous study, we aggregared all glances directed off-

road for each of the three interaction types, since multiple glances can occur on each 

experimental segment. The left graph of Figure 3.30 shows the average glance durations 

to be 0.59, 0.79 and 0.98 seconds for B, E and D condition, respectively. A one-way 

ANOVA indicated a significant main effect of the interaction type Int on glance duration 

(F(2,2533)=100.5490, p<0.0001). Post-hoc comparisons revealed significant differences 

between all possible pairs at p<0.0001. To keep the analysis procedure consistent with 

the previous study, we also conducted a non-parametric Kruskal-Wallis test. The analysis 

indicated the same conclusions: a significant main effect of the interaction type 

(χ2=200.6734, p<0.0001) and significant differences between all pairs (p<0.0001).  

The right graph of Figure 3.30 shows that the average number of glances 

directed away from the road is 3.49, 7.24 and 10.78 for B, E and D condition, 

respectively. As with the duration of glances, a one-way ANOVA revealed a significant 
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main effect of the interaction type on the number of glances (F(2,352)=149.6802, 

p<0.0001). Post-hoc pairwise comparisons indicated significant differences between all 

possible pairs: D and B (p<0.0001), D and E (p<0.0001) and E and B (p<0.0001). Non-

parametric Kruskal-Wallis test revealed the same conclusions: significant main effect of 

the interaction type (χ2=178.5063, p<0.0001) and significant differences between all 

interaction pairs (p<0.0001).  

Figure 3.30 Average duration (left) and number (right) of glances directed off road. 

 

Regarding subjective estimates of cognitive load, a repeated measures 

ANOVA revealed a significant main effect of interaction type on the NASA-TLX score 

(F(2,22)=10.977, p<0.0001) (Figure 3.31). Post-hoc pairwise comparisons indicated 

significant differences between baseline and difficult (p=0.001) and baseline and easy 

(p=0.013) conditions. No significant difference has been observed between easy and 

difficult conditions (p=0.075). However, it can be considered marginally significant, 

since it is close to the significance level of 0.05 and lower than 0.1. If we take into 

account that the NASA-TLX score for D (41.58) is larger than for E (32.31), we can 

conclude that a strong trend towards D being more cognitively loading does exist. 
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Figure 3.31 Average NASA-TLX score. 

We performed a repeated measures one-way ANOVA for each of the driving 

performance measures with Int as the independent variable. Figure 3.32 shows the 

average variances for lane position (upper left), steering wheel angle (upper right), 

velocity (bottom left) and average velocity (bottom right).  

Figure 3.32 Average variances of lane position (upper left), steering wheel angle (upper 

right) and velocity (bottom left) and average velocity (bottom right). 
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Table 3.5 outlines the results of the statistical analyses for all dependent 

driving variables. For each variable we present the corresponding F- and p-values for the 

main effect, as well as the pairwise comparisons conditional on the significance of the 

main effect. Note that bolded p-values indicate significance at the 0.05 level. 

   p-values for pairwise comparisons 

Dependent 
variable F-value p-value B - E B - D E - D 

Lane position 
variance F(2,22) = 4.031 0.032 0.093 0.380 0.004 

Steering wheel 
angle variance F(2,22) = 11.835 <0.0001 0.026 <0.0001 0.052 

Velocity 
variance F(2,22) = 3.709 0.041 0.990 0.073 0.048 

Average 
velocity F(2,22) = 2.265 0.127 N/A N/A N/A 

Table 3.5 Results of statistical analyses for all dependent driving variables. 

As we can see from Table 3.5 there is a significant main effect of the 

interaction type on variances of lane position, steering wheel angle and velocity, but not 

on average velocity. The results are mixed when it comes to pairwise comparisons: 

1. Lane position variance - the only significant difference was observed between E 

and D conditions (p=0.004). The comparison of B and E revealed a weakly 

significant difference (p=0.093 < 0.1), which indicates potential trends.  

2. Steering wheel angle variance - pair-wise comparisons revealed significant 

differences between B and E (p=0.026) and B and D task conditions (p<0.0001). 

The difference between E and D conditions is just over the significance level of 

0.05 (p=0.052), therefore, it can be considered marginally significant. 
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3. Velocity variance – similar to the variance of lane position, the only significant 

difference was detected between E and D conditions (p=0.048). The difference 

between B and D is approaching significance (p=0.073), which indicates existing 

trends. 

The lack of significant differences between some of the conditions for all 

dependent variables is surprising, given that we observed a very significant impact of the 

interaction type on all aspects of visual attention as well as the subjective estimates of 

cognitive load. This is another example that the lack of sensitivity of the average-based 

driving performance measures can occur with manual-visual interactions as well.  

Another interesting result is that the variance of lane position in B condition is 

larger than the variance in E condition. It is possible that the participants paid less 

attention to the car’s position in B compared to E condition due to the uneventful nature 

of the B task (unencumbered driving, just following the lead vehicle). Even though B is 

not significantly different from other conditions, this can create a misleading impression 

about the ranking of the experimental conditions. 

Cross-Correlation Results 
Figure 3.33 and Figure 3.34 show cumulative cross-correlation functions 

calculated for all three interaction conditions using steering wheel angle and lane position 

as DPS sequences, respectively. Solid lines represent cross-correlation functions, while 

dotted lines represent their corresponding significance levels of p=0.05. We have to note 

here that, unlike the previous study (“Exploring Augmented Reality Navigation Aids”), 

the segment durations in the current study (and the iPod study which will be presented in 

Chapter 4) were relatively long (about 40 seconds) relative to the maximum evaluated lag 
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of 5 seconds. Thus, the decreasing overlap between the EGS and DPS sequences is not a 

significant factor in the computation of cross-correlations (see Equation 3.2). As a result, 

we have “flatter” appearances of the results in case of iPod studies. 

 

Figure 3.33 Cumulative steering wheel angle cross-correlation functions calculated for 

D, B and E conditions. 

As we can see in Figure 3.33 statistically significant peaks in ܴ௦௪ሾ݈ܽ݃ሿ exist 

for all three interaction types. Each peak represents the average cumulative amount of 

angular change on the steering wheel over the course of interaction with the iPod. The 

existence of these prominent peaks indicates that on average there is a pronounced 

absolute change (AVC) in steering wheel angle about half a second after returning the 

gaze to the forward road. The most prominent peaks appear at the lags of 0.5 seconds for 

D, 0.6 seconds for E and 0.6 seconds for B condition. It is no surprise that the peak exists 

even in the B condition (even though it is fairly small compared to others), since the 

participants cast occasional glances towards the speedometer, steering wheel or 
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dashboard, and some of those glances might have resulted in larger changes once the 

gaze returned to the road.  

Similarly, Figure 3.34 shows the statistically significant peaks in ܴሾ݈ܽ݃ሿ at 

the lag of 0.6 sec for D, 1 sec for E (although, there is an almost entirely flat area in the 

cross-correlation function between 0.7 and 1 second) and 0.8 sec for B condition. Even 

though the peak in the B condition is very small, for both steering wheel angle and lane 

position it indicates that even during unencumbered driving glances directed away from 

the road have small but significant cumulative effects. However, these effects are many 

times smaller compared to other conditions, suggesting that the B condition cumulatively 

provides the smallest impact on driving and cognitive load.  

 

Figure 3.34 Cumulative lane position cross-correlation functions calculated for D, B and 

E conditions. 
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the nature of the secondary task is such that the participants can interact with the iPod for 

potentially long periods of time, glances directed off-road can be very dispersed. Thus, it 

can be expected that distant cross-correlation peaks may occur at various lags. Regarding 

cumulative steering wheel angle cross-correlation functions the distant peaks are both far 

from the edge of the glance (>1.5 seconds) and considerably smaller in magnitude 

compared to the most prominent peaks. The distant peaks that we can see in cumulative 

lane position cross-correlation functions (see Figure 3.34) occur more than 2 seconds 

away from the edge of the glance. During a 2 second time interval the vehicle travels 

49.16 meters at the posted speed limit of 55 MPH in this experiment. Hence, if a reaction 

to an unexpected event (such as the lead vehicle braking or approaching the edge of the 

road) is necessary after returning the gaze to the road, it is likely that it would be applied 

earlier. 

So far we have demonstrated that the significant cumulative effect of looking 

away from the road exists for both difficult and easy interaction with the iPod. The effect 

is visible even in the baseline condition in case of cumulative steering wheel angle and 

lane position cross-correlation functions. What we intend to explore now is whether these 

individual effects are different from each other and how they rank. For this purpose we 

use the comparison procedure presented in Section 3.1.5 (pg. 118).  

Table 3.6 outlines the results of the statistical comparisons. As we can see, 

both approaches detected a significant main effect (p<0.001) of interaction type Int for 

both ܴ௦௪ and ܴ. Pairwise comparisons revealed significant differences (p<0.001) 

between all possible pairs of interactions. Based on these results we can rank the three 

interaction types with respect to the average cumulative effects they produce on steering 
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wheel angle and lane position over the course of interaction with the iPod: D has the 

largest influence, followed by E and B. By comparing the magnitudes of the most 

prominent peaks, we can also determine the relative differences between the individual 

conditions. For instance, the magnitudes of the most prominent peaks for the cumulative 

steering wheel angle cross-correlation functions are as follows: 24.7, 13.88 and 3.647 

degrees/second. If we use B as a reference, we can see that D produces 24.7/3.647 = 6.77 

times larger effect than the B condition. Equivalently, E produces 13.88/3.647 = 3.81 

times larger effect compared to B. If we compare D and E conditions alone, we can see 

that D results in 24.7/13.88 = 1.78 times stronger cumulative effect on steering wheel 

angle compared to E. 

 Comparing Highest Peaks Comparing Areas Below Curves 
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Table 3.6 Statistical comparisons between cumulative cross-correlation results for three 

interaction types. 

This ranking matches our initial expectations and can be explained as follows. 

Just driving and following a lead vehicle on a straight highway with light ambient traffic 

is likely to be fairly simple (B condition). On the other hand, interactions with the iPod 
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can introduce varying levels of difficulty. Even though easy interactions (E condition) 

typically involved simple button presses, they still resulted in significant cumulative 

effects on steering wheel angle and lane position. This reflects the fact that the 

participants had to divide their mental and visual attention between the driving and the 

iPod task. Furthermore, since the interaction is manual-visual, the participants also had to 

remove one hand from the wheel, which introduced the physical distraction as well. This 

agrees with the predictions of the Wickens’ multiple resources theory [10], since many of 

the resources are shared between the driving and the interaction task. All of these effects 

can be expected only to increase in case of difficult iPod interactions (D condition). 

Namely, even though we intended to help our participants by issuing the sought songs in 

the alphabetical order, the task was still fairly demanding since it involved actively 

scanning the contents of the list. This placed a high burden on the participants in all 

processing stages: visual, mental and manual response. Thus, it is not surprising to see 

the D condition to produce the largest cumulative effect on both driving measures.  

The explanations from the previous paragraph are also supported by the 

subjective estimates of cognitive load obtained through the NASA-TLX score (see Figure 

3.31). Similar to the previous study, we wanted to observe how the cross-correlation 

results compare to subjective measures. Figure 3.35 shows positive relationships between 

the magnitudes of the most prominent peaks in ܴ௦௪ and ܴ and NASA-TLX results. We 

can see that in both cases the coefficients of determination are very high (ܴଶ  0.96), 

which indicate that the cross-correlation peaks offer the same conclusion as the subjective 

estimates about cognitive load changes: D has the highest impact on cognitive load 

followed by E and B conditions. 
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Figure 3.35 Magnitudes of prominent peaks in cumulative Rsw (upper graph) and Rlp 

(lower graph) vs. NASA-TLX score for B, E and D conditions. 

 

Figure 3.36 and Figure 3.37 show per-glance cross-correlation functions 

calculated for all three interaction types using the steering wheel angle and lane position 

as DPS sequences, respectively. Again, solid lines represent cross-correlation functions, 

while dotted lines represent their corresponding significance levels of p=0.05.  
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Figure 3.36 Per-glance steering wheel angle cross-correlation functions calculated for 

D, B and E conditions. 

 

Figure 3.37 Per-glance lane position cross-correlation functions calculated for D, B and 

E conditions. 

0 1 2 3 4 50

0.5

1

1.5

2

2.5

lag [sec]

R
sw

 [d
eg

re
es

/s
ec

on
d]

 

 

D
p = 0.05 for D
B
p = 0.05 for B
E
p = 0.05 for E

0 1 2 3 4 5

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

lag [sec]

R
lp

 [m
et

er
s/

se
co

nd
]

 

 

D
p = 0.05 for D
B
p = 0.05 for B
E
p = 0.05 for E



 

165 
 

As we can see in Figure 3.36, statistically significant peaks in ܴ௦௪ exist for all 

three interaction types. These significant peaks indicate the average amount of angular 

change on the steering wheel contributed by an average glance directed off-road. The 

most prominent peaks appear at the lags of 0.5 seconds for D, 0.7 seconds for E and 0.6 

seconds for B condition. As with the cumulative response, the existence of the peak in the 

B condition can be explained by the participants’ occasional glances towards the 

speedometer, steering wheel and dashboard. The highest peak is in the case of D (2.136 

deg/sec), followed by E (1.798 deg/sec) and B (0.941 deg/sec) conditions. 

Figure 3.37 shows that significant peaks exist in ܴ in case of D and E 

conditions, but not B condition. The most prominent peaks appear at 0.6 seconds for D 

and 0.7 seconds for E condition. The magnitudes of the highest peaks for D and E 

conditions indicate that an average glance contributes to an absolute change (AVC) in 

lane position equaling to 0.072 and 0.054 meters/second, respectively. Even though it is 

not significant, the most prominent peak for the B condition is located at 0.8 seconds. 

Since this peak is lower than the significance level, it indicates that an individual glance 

on average does not result in significant changes in lane position after returning the gaze 

to the road. Even though a significant peak was observed for the B condition in case of 

steering wheel angle, it is possible that the changes were not influential enough to result 

in significant effects on lane position. As suggested in the previous study, the difference 

in dynamics between steering wheel angle and lane position is one possible explanation 

for the observed result. Figure 3.38 and Figure 3.39 illustrate this assertion by presenting 

the raw data and the amplitude spectra for steering wheel angle and lane position for one 

example segment, respectively.  
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Figure 3.38 Example raw data for lane position and steering wheel angle. 

 

Figure 3.39 Amplitude spectra for example lane position and steering wheel angle data. 

We can see that the frequency content of lane position practically dies out after 

1 Hz. On the other hand, there is a considerable frequency content in case of steering 

wheel angle for frequencies larger than 1 Hz as well. The findings regarding the B 

150 155 160 165 170 175 180 185
-0.2

-0.1

0

0.1

0.2

la
ne

 p
os

iti
on

[m
]

time [sec]

150 155 160 165 170 175 180 185
-0.5

0

0.5

st
ee

rin
g 

w
he

el
 a

ng
le

[d
eg

]

time [sec]

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

am
pl

itu
de

 s
pe

ct
ru

m
fo

r l
an

e 
po

si
tio

n
|L

p(
f)|

frequency [Hz]

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

am
pl

itu
de

 s
pe

ct
ru

m
fo

r s
te

er
in

g 
w

he
el

an
gl

e 
|S

w
(f)

|

frequency [Hz]



 

167 
 

condition are valuable, since they indicate that under unencumbered conditions (no 

secondary task) the drivers were able to pay sufficient attention to their speed (since they 

were instructed to follow a lead vehicle at a constant distance) and maintain good driving 

performance. 

Table 3.7 shows the results of the statistical comparisons between per-glance 

cross-correlation functions for all three conditions. As we can see, significant main 

effects of the navigation type (p<0.001) exist for both ܴ and ܴ௦௪. Post-hoc pairwise 

comparisons using both procedures (highest peaks and areas below the curves) revealed 

significant differences (p<0.05) for all possible pairs in case of both lane position and 

steering wheel angle cross-correlation results. Based on this if we look at the per-glance 

cross-correlation functions for lane position, we can say that the highest influence exists 

in the case of D, followed by E and B conditions. Per-glance cross-correlation functions 

for steering wheel angle provided the same ranking.  

 Comparing Highest Peaks Comparing Areas Below Curves 
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Table 3.7 Statistical comparisons between per-glance cross-correlation functions for 

three interaction types. 
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3.2.3 General Discussion of the Results 

Addressing Hypotheses 
The purpose of this chapter was to address the following hypotheses:  

• H1 – which proposed an initiator-based approach to quantifying cumulative 

effects of secondary task engagements, 

• H2 – which proposed an initiator-based approach to quantifying the effects of 

individual instances of secondary task engagements, 

• HRP – which proposed two ways of ranking the above cumulative and instance-

based effects of secondary task engagements. 

The introductory sections of this chapter provided detailed explanations of the 

procedures proposed in the above hypotheses. Both H1 and H2 are initiator-based, which 

means that they account for the potential causes of changes in driving performance 

measures of interest. Specifically, we expected that changes (possible corrective actions) 

in driving performance measures (such as lane position and steering wheel angle) may 

occur following glances directed off-road. We used two driving simulator studies which 

employed multimodal interactions with in-vehicle devices (three PNDs and an iPod) in 

testing these hypotheses. Both types of devices result in visual attention being directed 

away from the forward road, since interactions with PNDs require visual while 

interactions with iPod require manual-visual modalities. Therefore, we can conclude that 

glances directed off-road describe these interactions well and this is the reason why we 

decided to use those as “initiators” in our method. 
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As we had a chance to see in Sections 3.2.1 and 3.2.2, the effects of off-road 

glances were successfully detected through statistically significant cumulative and per-

glance cross-correlation peaks.  

In both studies (“Exploring Augmented Reality Navigation Aids” and 

“Highway Driving and iPod Interactions”) we observed significant cumulative cross-

correlation peaks for both steering wheel angle and lane position. The fact that the most 

prominent peaks are statistically significant indicates that the corrective actions on 

average follow the reductions in visual attention to the road and that they do not occur by 

chance. Furthermore, since the method accounts for all off-road glances in concert, these 

peaks resemble the overall effects on driving and cognitive load produced over the course 

of interaction with these in-vehicle devices. These results indicate that H1 is supported.  

Similarly, in both studies we observed significant per-glance cross-correlation 

peaks for all conditions, except for per-glance lane position cross-correlations for AR 

PND in the navigation study and B condition in the iPod study. These results are very 

important, because they indicate that the effects on driving and cognitive load exist not 

only when looked at from the cumulative standpoint (which resembles both the individual 

interactions and the frequency of those interactions), but also at the level of an average 

instance of interaction, that is average off-road glance in our case. The finding that 

significant per-glance lane position cross-correlation peaks were not observed in case of 

AR PND in the navigation study and B condition in the iPod study is valuable as well, 

because it suggests that the off-road glances under those conditions did not negatively 

affect driving and cognitive load. Therefore, we can conclude that H2 is also supported. 
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Using the procedure proposed in hypothesis HRP we were able to rank the 

experimental conditions in both studies based on their cumulative cross-correlation 

results. This was in contrast to average-based measures which often did not provide 

enough sensitivity to distinguish between different conditions. For example, in the 

navigation study, no differences between PNDs have been observed using any of the 

average-based measures. Conversely, cumulative steering wheel angle and lane position 

cross-correlation results indicated differences between all three PNDs, with SV 

producing the largest impact on driving followed by SPND and AR PNDs. In the iPod 

study, the best sensitivity to different iPod tasks regarding average-based measures was 

obtained using the variance of steering wheel angle, which detected differences between 

all pairs. Other measures (variances of lane position and velocity) only detected 

differences between D and E conditions. On the other hand, cumulative steering wheel 

angle and lane position cross-correlation results detected differences between all pairs of 

interactions, with D resulting in the largest impact on driving followed by E and B 

conditions. 

Similarly, we used the same procedure outlined in hypothesis HRP for ranking 

the per-glance cross-correlation results. In the navigation study we detected differences in 

the per-glance steering wheel angle cross-correlation results between AR and SV and 

between AR and SPND. The ranking obtained based on these significant differences 

indicated that the individual glances directed off-road produced significantly smaller 

impact for AR as compared to SV and SPND. On the other hand, SV and SPND 

produced similar effects per average glance. In the iPod study we detected significant 

differences in per-glance steering wheel angle and lane position cross-correlation results 
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between all interaction types and the ranking matched the one obtained with the 

cumulative results: D resulted in the largest impact, followed by E and B conditions. The 

importance of these results cannot be emphasized enough, because they indicate that the 

majority of the tested experimental conditions differ even at the level of average glances 

directed off-road, which is a clear indicator that differences in cognitive load introduced 

by these different interaction types do exist. This conclusion provides an important 

insight into the type of interaction performed and can be used for comparing different 

designs. Based on the rankings obtained for both cumulative and per-glance cross-

correlation results we can conclude that HRP is supported. 

Comparing Cross-Correlation and Average-based Results 
The main advantage of our method that we set out to demonstrate is the ability 

to detect short-lived and/or infrequent deteriorations in driving performance that may 

easily be lost when analyzed using average-based measures. As we had a chance to see in 

this chapter, the results of two driving simulator studies clearly show that this is the case. 

These studies provided examples of multimodal interactions with in-vehicle devices 

which result in both short and long-lived effects on driving performance. Gazing towards 

the displays of PNDs as well as the short and simple manual-visual interactions with an 

iPod (E condition) are the examples of short-lived effects on driving. As we had a chance 

to see our method successfully detected the influences of these interactions through 

statistically significant cross-correlation peaks (both cumulative and per-glance). 

Furthermore, we detected significant differences between the majority of experimental 

conditions for both studies using our cumulative and per-glance cross-correlation results, 

even when those differences were not obvious using the average-based measures. This in 
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turn allowed ranking the tested conditions with respect to their influence on driving and 

cognitive load. Based on these results we can say that our method provides a very 

sensitive measure. 

We have to note here that our cumulative measure is similar in nature to the 

average-based measures, since they both provide a high-level description of the 

experimental condition of interest. However, even when no other reference is available 

for comparison (i.e., only one experimental condition is being analyzed) our method 

provides more information compared to the average-based measures. Namely, average-

based measures provide only one numerical quantity which describes the experimental 

condition of interest and unless a reference is available, we cannot draw any conclusions 

from it. On the other hand, our cumulative cross-correlation measure describes how the 

performance measures of interest change over time, when the largest change (most 

prominent peak) occurs and whether the change is statistically significant or not. This 

way we can determine whether the selected “initiators” actually have the suspected 

impact on driving and cognitive load. 

If we look at the per-glance cross-correlation results, they provide even more 

information since they also allow observing the effect of an average instance of 

secondary task engagement, which cannot be obtained using the average-based measures.  

Construct Validity 
Our results suggest that construct validity of our proposed method regarding 

cognitive load estimation is supported. Namely, in both studies we obtained very strong 

positive relationships (ܴଶ  0.96) between the most prominent peaks in cumulative 

steering wheel angle and lane position cross-correlation functions and the subjective 
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estimates of cognitive load obtained using the NASA-TLX questionnaire (see Figure 3.22 

and Figure 3.35). It is very interesting to notice that even a simple linear function 

provided such a strong fit. Nevertheless, the shape of this relationship should be 

examined further in the future studies. The existence of this strong relationship is a very 

important finding, because it confirms that both measures indicate changes in cognitive 

load in the same direction. This means that our method provides another objective 

measure which may help in avoiding circular arguments, as suggested by Wickens [10]. 

Furthermore, in the iPod study the ranking of experimental conditions obtained through 

the variances of steering wheel angle matched the ranking obtained using both 

cumulative and per-glance steering wheel angle cross-correlation results.  

Taking all of the above into account we can formulate three general 

conclusions:  

a) if the average-based measures provide enough sensitivity, then they provide the 

same conclusions as our cross-correlation measures,  

b) our cross-correlation measures complement the average-based measures when 

those do not provide enough sensitivity,  

c) in each of the above cases our instance-based (per-glance in our case) cross-

correlation measures provide low level insight into individual instances of 

interaction which cannot be obtained using the average-based measures. 

General Observations 
Ranking of the cross-correlation results does not allow us to draw immediate 

conclusions about how using the different PNDs or interaction types with an iPod relate 
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to the risk of a collision. In fact, there were no collisions on any of the experimental 

segments used for data analysis in our studies which resulted from using the tested 

devices. The most reliable risk estimation is obtained from naturalistic driving studies 

resulting in large databases of real-life driving data. Various conditions have to align for 

the accidents to actually occur (recall our discussion of the Swiss cheese model of 

incidence occurrence presented in Chapter 2). Those can be identified through naturalistic 

studies, since they provide realistic context to the overall driving experience [129]. From 

those studies we know that accidents are very often preceded by driver distractions of 

various kinds. The distractions often result in deteriorations in driving performance. 

Thus, being able to judge the amount of deterioration that a particular interaction can 

produce is valuable and may suggest likely risk increases. This is exactly what we are 

seeing with our cross-correlation results, even though it is often not detected through 

average-based measures. 

As we had a chance to see almost all of the observed most prominent peaks in 

the cross-correlation functions occurred around 0.6 seconds after returning the gaze to the 

road. We hypothesize that this observed lag may be related to the urgency to respond to 

the situation on the road ahead and the reaction time. How urgent the response should be 

depends on many factors, such as the lateral distance from the edge of the lane (the 

response may be faster if the vehicle is closer to the edge) and the existence of an 

obstacle. According to the literature review created by Kosinski [130], mean reaction 

time for college-age individuals (which agrees with the age group of our participants) is 

about 190 msec to detect visual stimulus. This can be compared with obtaining visual 

information about the position of the vehicle in the lane after returning the gaze to the 
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road ahead. Since the participants have at least one hand on the steering wheel throughout 

the drive, as soon as the visual stimulus is detected, the reaction can be applied. This 

agrees with our findings. Namely, the fact that we observed the largest change on average 

about 0.6 seconds after the gaze returns to the road indicates that the participants actually 

started applying the correction on the steering wheel earlier. It is also interesting to notice 

that the time when the largest change on the steering wheel occurs is very similar to the 

brake reaction time of 0.7 seconds observed in the literature for fully aware individuals 

[131]. These results provide insights into the potential sources of the behavior of the lag. 

However, further studies are required to investigate whether and how the lag varies 

depending on the characteristics of the driving and secondary tasks. Chapter 5 proposes 

multiple experimental settings which may help in achieving this goal. 

One aspect that is worth discussing is the difference in shape between the lane 

position and steering wheel angle cross-correlation results. On average we can say that 

these measures are mirrored and provide the same conclusions regarding detection and 

ranking of secondary task engagements. However, the fact that the largest peaks are more 

pronounced in case of steering wheel angle cross-correlation results can be explained by 

the faster dynamics of the steering wheel angle. This was demonstrated in both studies 

using the amplitude spectra of lane position and steering wheel angle (see Figure 3.25 

and Figure 3.39). Therefore, we can conclude that steering wheel angle cross-correlation 

functions are more sensitive to secondary task engagements compared to lane position 

cross-correlation functions. This can be seen clearly if we look at per-glance cross-

correlation functions for the simplest conditions in both studies (AR and B): significant 



 

176 
 

peaks are detected for AR (navigation study) and B (iPod study) conditions in case of 

ܴ௦௪, but not in case of ܴ.  

One question that can be asked here is as follows: why are there differences in 

the magnitudes of the observed cross-correlation peaks in the two studies? There are two 

main contributors to this result: interaction modality and driving environment. Both of 

these factors directly influence visual attention and driving performance while engaging 

in secondary tasks. However, we have to keep in mind that it is likely that these factors 

are coupled and that they cannot be considered entirely separately. It was shown in the 

previous studies that manual-visual interactions typically influence driving performance 

more strongly than predominantly visual or auditory interactions. Since driving 

performance directly contributes to the cross-correlation results we can expect that the 

observed differences between the studies would partially stem from the differences in 

interaction modality. Additionally, cross-correlation results depend on visual attention as 

well, thus any differences here would also affect the observed result. The other reason is 

that driving behavior depends largely on the road type and driving conditions. Obviously, 

driving on a busy city road creates a very different experience than driving on a highway 

during off-peak hours. For example, if we look at cumulative steering wheel angle cross-

correlation functions for SV PND (navigation study) and D condition (iPod study) we can 

see that the magnitudes of the most prominent peaks are 10.65 degrees/second and 24.7 

degrees/second, respectively. This result can be explained by the much larger average 

number of glances per segment for D (10.78) compared to SV (1.6). On the other hand, a 

higher per-glance cross-correlation peak was observed for SV (7.022 degrees/second) 

compared to D (2.136 degrees/second) condition. Since in this case we are observing the 
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individual instances of secondary task engagements (glances), one explanation is that this 

difference resulted from the overall difference in driving behavior between the two 

studies (despite the fact that on average D condition had longer glances (0.98 seconds) 

compared to SV (0.53 seconds)). In other words, each environment introduces some 

“baseline” variability in driving performance. This can be seen clearly by comparing the 

simplest conditions in these studies, namely, AR and B, respectively. We have to note 

here that the two conditions are not exactly the same. On the one hand, B condition 

represented true unencumbered driving, since no side task was involved. On the other 

hand, AR condition involved following navigation directions presented on the HUD, 

which captured at least some of drivers’ attention. However, the comparison is useful for 

indicating trends. Even though both conditions had very similar visual attention to the 

forward road (PDTAR = 96.48%, PDTB = 94.62%), they had very different impacts on 

driving. For example, variances of steering wheel angle were 4.81 degrees2 and 0.23 

degrees2 for AR and B condition, respectively. We argue that the observed differences in 

driving were largely caused by the increased environment complexity that was present in 

the navigation study: two-lane streets, high traffic density, pedestrians, parked vehicles 

and short, narrow street segments with many consecutive turns. All these variables 

resulted in the higher expanded effort to maintain the vehicle in the center of the lane. 

Based on this we can assert that the driving environment is of considerable importance 

and undoubtedly has an influence on the cross-correlation results.  

Effects of the Driving Environment 
Based on the arguments provided in the previous section, we can state a new 

hypothesis (H4), which is concerned with the effects of driving environment. Namely, we 
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hypothesize that driving performance and cognitive load for the same secondary task 

would change between different driving conditions. Specifically, we expect that a more 

challenging driving environment may introduce larger effects on driving and cognitive 

load, which may be reflected in average-based and cross-correlation measures. 

We propose to test the effect of the environment by comparing the results of 

two driving simulator studies which incorporate the same secondary task, but performed 

under different driving conditions. One study will be the iPod interaction study presented 

in this chapter (“Highway Driving and iPod Interactions”). The other study will include 

the same type of iPod interactions, except that they will be conducted in the city 

environment. Specifically, in this second study the participants will interact with an iPod 

while following a lead vehicle on a busy, straight city road. We will refer to this study as 

“City Driving and iPod Interactions” and it will be presented in Chapter 4. The fact that 

the two studies will have the same manual-visual task should enable us to precisely 

quantify the effect of the driving environment on both average-based driving 

performance measures and cross-correlation measures. Namely, given the equality of the 

secondary task engagements, it is expected that the amount of visual attention required to 

complete the tasks should be approximately the same between the two studies. Of course, 

it is possible that drivers may decide to protect the driving task by looking less at the iPod 

(given the increased complexity of the city environment). However, if the visual attention 

proves to be very similar between the two studies, any potential changes in the observed 

results can be attributed predominantly to the change in the driving environment. We 

expect to see larger variability in driving performance measures (specifically, steering 
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wheel angle and lane position) and larger cross-correlation results under city compared to 

the highway environment. 

Exploring Underlying Mechanisms 
Besides the effects of the driving environment, the next chapter will also 

explore influential variables (predictors) which can be used for explaining the underlying 

mechanisms that contribute to the observed cumulative and instance-based cross-

correlation results (as proposed in hypothesis H3). In that respect, the two iPod studies 

(highway and city driving) lend themselves well, since they are fairly well controlled 

without any extraneous variables to account for (such as unexpected events and 

consecutive turns as in the navigation study). Therefore, they should allow easier 

identification of the most important predictors. We will refer to these two iPod studies as 

“reference” studies. 

Testing Construct Validity with Physiological Measures 
Even though subjective estimates are very informative and provide direct 

information about participants’ experiences, the problem is that they are not very 

objective. As we saw in the introduction, it was demonstrated in the literature that 

physiological measures can also be an effective way of characterizing changes in 

cognitive load. They are fairly difficult to be willingly impacted, thus providing a high 

level of objectiveness. It is for this reason that the study presented in the next chapter 

compares the cumulative cross-correlation results with two commonly used physiological 

measures: average heart rate and skin conductance. We expect that, similar to subjective 

estimates, a positive relationship will be revealed between the two. This will provide 

another source of support for construct validity of our cross-correlation method. 
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CHAPTER 4 

MECHANISMS UNDERLYING CROSS-CORRELATION 

RESULTS 

The previous chapter provided a detailed description of the cross-correlation 

method as well as the results it produces based on two driving simulator studies. The 

current chapter will accomplish the following:  

1. Present yet another driving simulator study which will demonstrate the 

effectiveness of the cross-correlation method in detecting changes in driving 

performance and cognitive load. Specifically, this study will be used for testing 

hypotheses H1 (quantification of cumulative effects of secondary task 

engagement), H2 (quantification of instance-based effects of secondary task 

engagement) and HRP (ranking of the above cumulative and instance-based 

results).  

2. Test the effect of driving environment on average-based and cross-correlation 

measures using the “reference” studies approach. Specifically, this chapter will 

compare a study which explores interactions with an iPod while driving in the city 
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environment with the study which was described in the previous chapter and 

explored the same type of interactions but in highway driving. If the effect of the 

environment is confirmed, it will provide support for hypothesis H4. 

3. Use the results obtained from the “reference” studies to reveal the underlying 

variables (predictors) which have an important influence on the observed cross-

correlation results. This will be used for testing hypothesis H3. 

4.1 City Driving and iPod Interactions 

Method 
This study is very similar to the previous study (“Highway Driving and iPod 

Interactions”) in the sense that both involve the same type of secondary task: interactions 

with an MP3 player, specifically, an iPod Nano device. The experimental setup was 

exactly the same as in the previous study: the iPod was attached to a board paced on the 

right side of the steering wheel. This location allowed for easy manual-visual interaction 

without the need for large changes in gaze direction. A total of 12 participants (average 

age 19.6) participated in the study. 

The primary task consisted of following a yellow lead vehicle which travelled 

at a constant speed of 40 MPH (64.4 km/h) (Figure 4.1). The simulated environment 

consisted of a straight city road with one lane in each direction, each 3.2 meters wide. We 

decided not to include any intersections, so as to assure uniform driving difficulty 

throughout the whole experiment. Both sides of the road were randomly populated with 

parallel-parked vehicles. The road was presented in daylight with frequent random traffic 

appearing both in the opposite lane (about 2 vehicles per second) and behind the 
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participant’s vehicle. However, the ambient traffic did not interfere with either the lead 

vehicle or the participants’ vehicle. The participants were instructed to follow the lead 

vehicle at a comfortable distance and to drive normally as they would in real life. 

 

Figure 4.1 Simulated city environment. 

The secondary task was exactly the same as in the previous study and it 

involved three levels of difficulty, which we will reiterate here briefly for completeness: 

1. No secondary task – baseline (B). This condition did not involve any interactions 

with the iPod – just following the lead vehicle. 

2. Easy iPod interaction (E). The participants were instructed to complete 10 simple 

actions with the iPod, such as playing the current song, rewinding a song, and 

increasing/decreasing volume. 

3. Difficult iPod interaction (D). The participants were instructed to find and play 10 

songs from a list of 347 songs. Both the list and the sought songs were sorted 
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alphabetically. This simplified the task, since it required scrolling in only one 

direction. 

In both easy and difficult conditions, the participants were instructed which 

action to perform using a computer voice. The participants had 40 seconds to complete 

each task.  

As in the previous study, we chose a within-subjects factorial design 

experiment with the interaction type as the primary independent variable, Int. The levels 

of Int were B, E and D and their order was counterbalanced among the participants in 

order to circumvent the learning effect. The following dependent variables were 

collected: PDT on the forward road, average glance duration, average number of glances, 

average-based driving performance measures expressed through variances of steering 

wheel angle, lane position and velocity, average velocity and subjective estimates of 

cognitive load (using the NASA-TLX questionnaire). As we discussed in Chapters 1 and 

2, other researchers have indicated the usability of physiological measures for detecting 

changes in cognitive load. It is for this reason that we decided to include physiological 

measures in this study as well, besides the variables listed above. Specifically, we 

collected average heart rate and skin conductance (see Appendix B for a description of 

our physiological measurements monitor).  

Since there were 10 interactions with the iPod, we divided our experiment in 

ten 40-second-long segments. This segmentation was performed for the B condition as 

well, so we would be able to make direct comparisons with the other conditions. All of 

our dependent variables were calculated for each experimental segment. 
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General Results 
Visual attention analyses will be presented first. A repeated-measures one-way 

ANOVA indicated a significant main effect of the interaction type on PDT on the 

forward road (F(2,22)=115.279, p<0.0001) (Figure 4.2). Post-hoc comparisons indicated 

highly significant differences between all possible pairs (p<0.0001). 

 

Figure 4.2 Average PDT on the forward road. 

As we can see in Figure 4.2, the participants spent 92.1%, 85.7% and 71.2% of 

time looking at the forward road for B, E and D condition, respectively. If we use these 

percentages to calculate the amount of time participants spent looking away from the 

road for each minute of driving, it would amount to 17.28 seconds for D, 8.6 seconds for 

E, and only 4.74 seconds for B task. These numbers indicate that as the complexity of the 

secondary task increased, visual attention shifted away from the road more. 

More details about changes in visual attention can be obtained if we look at 

average duration and number of glances directed away from the road for each interaction 

type. The same set of statistical analyses as in the previous study was performed here as 

well. Figure 4.3 left shows the average glance durations to be 0.63, 0.65 and 0.87 seconds 
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for B, E, and D condition, respectively. A one-way ANOVA indicated a significant main 

effect of the interaction type on glance duration (F(2,3072)=99.9402, p<0.0001). Post-

hoc pairwise comparisons revealed significant differences between D and B (p<0.0001) 

and D and E (p<0.0001), but not between E and B (p=0.6108) conditions. The same 

conclusion was obtained using a non-parametric Kruskal-Wallis test: significant main 

effect (χ2=106.1096, p<0.0001) and significant differences between all pairs (p<0.0001) 

except E and B (p=0.9657). 

Figure 4.3 Average duration (left) and number (right) of glances directed off-road. 

As we can see in the right graph of Figure 4.3, the average number of glances 

directed off-road is 4.75, 8.5 and 12.77 for B, E and D, respectively. A one-way ANOVA 

indicated a significant main effect of the interaction type on number of glances 

(F(2,352)=131.5559, p<0.0001). Post-hoc comparisons indicated differences between all 

pairs (p<0.0001). A non-parametric Kruskal-Wallis test also indicated a significant main 

effect (χ2=156.5675, p<0.0001) and significant pairwise differences between all pairs 

(p<0.0001) of tasks. 

Next, we analyzed subjective estimates of cognitive load obtained using the 

NASA-TLX questionnaire (Figure 4.4). A significant main effect of interaction type was 
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detected using a repeated-measures ANOVA (F(2,22)=32.072, p<0.0001). Pairwise 

comparisons indicated differences between all pairs: B and E (p<0.0001), B and D 

(p<0.0001) and E and D (p=0.002). We can say that the subjective estimates agree with 

the visual attention results: participants judged D condition to be the most difficult, 

followed by E and B conditions. 

 

Figure 4.4 Average NASA-TLX score. 

The results obtained through the subjective estimates of cognitive load were 

also confirmed by one physiological measure: average skin conductance. Figure 4.5 

shows the average values for both skin conductance and heart rate.  

Figure 4.5 Average physiological measures: skin conductance (left) and heart rate 

(right). 
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One of the participants accidently disconnected the heart rate electrode while 

driving the simulator, so the heart rate data was not available in that case. Thus, heart rate 

is based on 11, while skin conductance is based on 12 participants. 

A repeated-measures ANOVA indicated a significant main effect of interaction 

type on skin conductance (F(2,22)=6.451, p=0.006). Post-hoc pairwise comparisons 

revealed a highly significant difference between B and D conditions (p=0.003) and a 

marginally significant difference between B and E conditions (p=0.053). No difference 

has been observed between E and D conditions (p=0.299). If we look at the skin 

conductance values, we can see that participants experienced the lowest workload during 

the B condition, followed by E and D conditions. Even though the difference between E 

and D is not statistically significant, we can clearly see that skin conductance indicates 

the same trend observed with subjective estimates of cognitive load. No significant effect 

of interaction type has been observed on average heart rate (p>0.05).  

Finally, we analyzed the effects of the three interaction types on driving 

performance using average-based measures. Figure 4.6 shows average variances of lane 

position (upper left), steering wheel angle (upper right), velocity (lower left) and average 

velocity (lower right). For each measure we performed a repeated-measures ANOVA 

with interaction type as the independent variable. Conditional on the significant main 

effect, we also performed pairwise comparisons. Table 4.1 outlines these results. As we 

can see a significant main effect of interaction type has been observed for all variables 

except lane position variance. Furthermore, in case of variances of steering wheel angle 

and velocity, post-hoc comparisons revealed significant differences between all possible 
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pairs (p<0.05). In case of average velocity, the only significant difference has been 

observed between E and D conditions. 

Figure 4.6 Average variances of lane position (upper left), steering wheel angle (upper 

right), velocity (lower left) and average velocity (lower right). 

   p-values for pairwise comparisons 

Dependent 
variable F-value p-value B - E B - D E - D 

Lane position 
variance F(2,22) = 1.922 0.170 N/A N/A N/A 

Steering wheel 
angle variance F(2,22) = 27.401 <0.0001 0.007 <0.0001 <0.0001 

Velocity 
variance F(2,22) = 10.253 0.001 0.01 0.002 0.036 

Average 
velocity F(2,22) = 3.552 0.046 0.236 0.212 0.016 

Table 4.1 Statistical analyses of average-based driving performance measures. 

Based on these results we can conclude that iPod interactions in a busy city 

environment resulted in higher variability of the steering wheel angle compared to just 
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driving (B), which can be explained by the participants exerting higher effort to keep the 

vehicle in the center of the lane. We have to remind ourselves that the road consisted of 

two 3.2 meters wide lanes with high volume of ambient traffic and parked vehicles on 

both sides of the road. It is likely that this demanding driving environment gave 

participants more incentive to work harder in order to avoid collisions with the 

surrounding objects. This may also explain the lack of significant main effect for lane 

position. Nevertheless, it does not mean that the effect of interactions is not present, 

mearly that it was not detected using the average-based approach. Increased velocity 

variance is another indicator that the participants had harder time keeping their speed 

constant as the difficulty of the secondary task increased.  

Cross-Correlation Results 
Cumulative steering wheel angle and lane position cross-correlation results are 

presented in Figures 4.7 and 4.8, respectively. In both figures solid lines represent cross-

correlation functions, while dotted lines represent their significance levels of 0.05.  

Figure 4.7 shows that significant peaks exist in ܴ௦௪ሾ݈ܽ݃ሿ for all interaction 

types. The peaks represent the average absolute cumulative angular change (AVC) on the 

steering wheel while performing each interaction task with the iPod. They indicate that 

on average there is a larger cumulative change in the steering wheel angle following 

glances directed away from the forward road than in usual circumstances. The significant 

peak is also present in the B condition, which is the result of occasional glances towards 

the speedometer, steering wheel or dashboard. However, its magnitude is considerably 

smaller compared to D and E conditions. The most prominent peaks occur on average at 

the lags of 0.5 seconds for D, 0.4 seconds for E and 0.6 seconds for B condition. 
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Figure 4.7 Cumulative steering wheel angle cross-correlation functions calculated for B, 

E and D conditions. 

 

 

Figure 4.8 Cumulative lane position cross-correlation functions calculated for B, E and 

D conditions. 
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Figure 4.8 shows that significant peaks also exist in case of cumulative lane 

position cross-correlation results for all three interaction types. The most prominent peaks 

appear at 0.6, 0.5 and 0.6 seconds for D, E and B condition, respectively. 

We can see that, similar to the previous study, in both cumulative steering 

wheel angle and lane position cross-correlation functions some distant cross-correlation 

peaks occur on average more than 2 seconds away from the edge of the glance. If we take 

into account that the speed limit in this study was 40 MPH, we can calculate that the car 

would travel 35.76 meters during the interval of 2 seconds. Given that the driving 

environment was populated both with ambient traffic and parked vehicles on both sides 

of the road, it is likely that the necessary correction of the car’s position in the lane would 

have to be applied much earlier in order to avoid a collision. The most prominent peaks 

also support this assertion, since their magnitudes are larger compared to the magnitudes 

of the distant peaks. 

As we had a chance to see so far, significant cumulative effects of looking 

away from the road were detected for all interaction types and for both steering wheel 

angle and lane position. This is an important result. However, we would also like to know 

whether those effects are different between the three interaction types and how they rank. 

To accomplish this, as with the previous study, we used the two comparison procedures 

presented in Section 3.1.5. The results are outlined in Table 4.2. 

Using both approaches we detected a significant main effect (p<0.0001) of the 

interaction type on the cumulative cross-correlation results for both steering wheel angle 

and lane position. Furthermore, post-hoc pairwise comparisons revealed differences 

between all possible pairs (p<0.0001). Given that all differences are statistically 
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significant, we can conclude that the largest cumulative impact on driving over the course 

of interaction with the iPod was introduced by D condition, followed by E and B 

conditions. To obtain a sense of how large the effect is, we can compare the magnitudes 

of the most prominent peaks between individual conditions. Since B condition 

represented true unencumbered driving, it makes an ideal reference for comparisons. If 

we take ܴ௦௪ as an example, we can see that D produced 41.6/7.714 = 5.36 times larger 

cumulative effect than B condition. Similarly, if we compare E and B conditions, we can 

see 18.19/7.714 = 2.36 times larger effect in case of E condition. Finally, when 

comparing D and E conditions alone, we can see that D produced 41.6/18.19 = 2.29 times 

larger effect. The effect sizes can be calculated analogously for ܴ results. 

 Comparing Highest Peaks Comparing Areas Below Curves 

C
um

ul
at

iv
e 

st
ee

ri
ng

 w
he

el
 

an
gl

e 
cr

os
s-

co
rr

el
at

io
n 

Main effect of Int p < 0.001 Main effect of Int p < 0.001 

Pairwise comparisons Pairwise comparisons 

B-D B-E D-E B-D B-E D-E 

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

C
um

ul
at

iv
e 

la
ne

 
po

si
tio

n 
cr

os
s-

co
rr

el
at

io
n 

Main effect of Int p < 0.001 Main effect of Int p < 0.001 

Pairwise comparisons Pairwise comparisons 

B-D B-E D-E B-D B-E D-E 
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Table 4.2 Results of statistical comparisons between cumulative cross-correlation 

functions for B, E and D conditions. 

In order to analyze how the conclusions obtained from the cumulative cross-

correlation results compare to other estimates of cognitive load, we turn to subjective and 

physiological measures. As we had a chance to see in the introduction both of these 
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measures describe overall changes in cognitive load. Therefore, their comparison with 

our cumulative cross-correlation results is sound. Figure 4.9 demonstrates positive 

relationships between the magnitudes of the most prominent cumulative steering wheel 

angle and lane position cross-correlation peaks versus NASA-TLX results. Using simple 

linear fitting, we obtained very strong positive relationships in both cases (coefficients of 

determination are ܴଶ  0.88), which indicate that all of these measures lead to the same 

conclusions with respect to the overall cognitive load changes: D produces the highest 

impact, followed by E and B conditions. 

 

 
Figure 4.9 Magnitudes of the most prominent peaks of cumulative cross-correlation 

functions ܴ௦௪ and ܴ vs. NASA-TLX score for B, E and D conditions. 
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Since in this study we detected a significant main effect of the interaction type 

with the iPod on average skin conductance, we compared those results to the ones 

obtained using our cumulative cross-correlation measure. Figure 4.10 shows strong 

positive relationships (ܴଶ  0.81) between the magnitudes of the most prominent 

cumulative cross-correlation peaks for both steering wheel angle and lane position versus 

average skin conductance.  

 

 
Figure 4.10 Magnitudes of the most prominent peaks of cumulative cross-correlation 

functions ܴ௦௪ and ܴ vs. average skin conductance for B, E and D conditions. 
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that average skin conductance did not provide high enough sensitivity to detect this 

difference, while our method did. Nevertheless, the comparisons presented in Figure 4.10 

are still valuable, since they indicate important trends which lead to the same overall 

conclusions between the two measures. 

Now that we understand the cumulative effects of iPod interactions on 

cognitive load, we can also perform a more fine-grained analysis by observing the 

impacts of individual instances of interactions (off-road glances in our case). Figures 4.11 

and 4.12 depict per-glance steering wheel angle and lane position cross-correlation results 

for all interaction types, respectively. As before, solid lines represent cross-correlation 

functions, while dotted lines represent their significance levels of 0.05. 

 

Figure 4.11 Per-glance steering wheel angle cross-correlation functions calculated for B, 

E and D conditions. 
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peaks in the per-glance steering wheel angle cross-correlation functions. These peaks 

indicate the average absolute amount of angular change (AVC) on the steering wheel 

resulting from an average glance directed off-road. The lags of the most prominent peaks 

are 0.5 seconds for D and E, and 0.6 seconds for B condition. It is very interesting to see 

that the impact of an occasional glance directed off-road exists in the B condition as well. 

Similar results are obtained in case of lane position. Namely, Figure 4.12 

demonstrates significant per-glance lane position cross-correlation peaks for all three 

conditions. These peaks indicate the average amount of change in the lane position 

contributed by an average glance directed away from the road. The most prominent peaks 

occur at the lags of 0.6 seconds for D, 0.7 seconds for E and 0.8 seconds for B condition.  

 

Figure 4.12 Per-glance lane position cross-correlation functions calculated for B, E and 

D conditions. 
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results between the three conditions. Table 4.3 outlines the obtained results. As we can 

see, both procedures (highest peaks and areas below the curves) indicated significant 

main effects (p<0.0001) of interaction type for both per-glance steering wheel angle and 

lane position cross-correlation functions. All pairwise comparisons indicated significant 

differences as well (p<0.0001). These results demonstrate that the impacts on driving 

resulting from individual glances directed away from the road are different and depend 

on the difficulty of the interaction, with D condition producing the largest impact, 

followed by E and B conditions. This ranking agrees with the one obtained with the 

cumulative cross-correlation functions.  
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Table 4.3 Results of statistical comparisons between per-glance cross-correlation 

functions for B, E and D conditions. 

By comparing the magnitudes of the most prominent peaks we can obtain the 

relative size of the effect contributed by an average glance. For example, if we use per-

glance steering wheel angle cross-correlation functions we can see the following effects: 

D produced 3.165/1.613 = 1.96 times larger impact compared to B and 3.165/2.096 = 
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1.51 times larger impact compared to E condition. If we compare E and B conditions, we 

can see 2.096/1.613 = 1.3 times larger impact in case of E condition. 

The fact that we revealed significant differences between interaction types on 

the per-glance basis is a very important one. Besides knowing that the three interaction 

types are different regarding their cumulative effects on driving and cognitive load, this 

indicates that the differences exist at a much lower level as well, namely, at the level of 

an average glance. This is an important finding, because it provides a new insight into the 

performed activity, in this case interactions with the iPod. In other words, we observed 

that the D condition resulted in the largest cumulative effect, which could have been 

expected given the associated level of involvement. However, it was not obvious that the 

D condition also produced the largest effects in the individual instances of interaction.  

General Conclusions 
As we had a chance to see in the previous section, our cross-correlation 

method successfully detected both cumulative and instance-based (per-glance in our case) 

influences on cognitive load. In each case we detected significant impacts of looking 

away from the road resulting from iPod interactions, which was indicated by statistically 

significant cross-correlation peaks. These are important results because they demonstrate 

when the influences occur (lag) as well as how large they are (magnitude of a significant 

peak). This is possible because our method takes time into account. Conversely, average-

based measures analyze an experimental condition as a whole, thus characterizing it with 

only a single value. Furthermore, we demonstrated significant differences between 

interaction types based on the steering wheel angle and lane position cross-correlation 

results (both cumulative and per-glance), which allowed us to rank the effects of those 
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interactions produced on driving and cognitive load. The significant ranking that we 

obtained also allowed us to calculate the relative sizes of the effects between the three 

interaction types.  

It is worth noting that the average variance of lane position did not even detect 

the main effect of interaction type (see Table 4.1). This indicates the complete lack of 

sensitivity that the average variance of lane position demonstrated in this study. On the 

other hand, our method demonstrated higher sensitivity by detecting both the main effect 

of the interaction type as well as all pairwise differences. 

Based on all of the above results we can conclude that hypotheses H1, H2 and 

HRP are supported. Furthermore, we demonstrated that our cross-correlation method is 

capable of providing more sensitivity to changes in cognitive load compared to average-

based driving performance measures.  

This study provides ample evidence which supports construct validity of our 

method: 

1. A significant main effect of the interaction type was detected in case of the 

following average-based driving performance measures: average variances of 

steering wheel angle and velocity, and average velocity. Post-hoc pairwise 

comparisons indicated significant differences between all interaction types for the 

first two variables. The ranking based on those differences matches the ranking 

obtained using our cross-correlation method. 

2. A significant main effect of the interaction type was detected for the subjective 

estimates of cognitive load based on the NASA-TLX questionnaire. Significant 
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differences were detected between all interaction types and the ranking matched 

the one obtained with our method. Additionally, we demonstrated through linear 

regression models a very strong positive relationship between the two types of 

measures (see Figure 4.9). 

3. Finally, a significant main effect of the interaction type was detected for one 

physiological estimate of cognitive load, namely, average skin conductance. Even 

though this measure was not sensitive enough to detect the difference between D 

and E conditions, the magnitudes of the most prominent cumulative cross-

correlation peaks and the average values of skin conductance for different 

interaction types showed a strong positive relationship (see Figure 4.10).  

4.2 Observing Effects of Driving Environment through 

Reference Studies 

This section investigates the effect of the driving environment and how it was 

reflected in visual attention, average-based driving performance measures and cross-

correlation results. As we hypothesized (H4) in Section 3.2.3, we expect that driving 

environment may have a significant effect on all of the above results. However, based on 

the results obtained in the previous studies, we expect that our method may again provide 

more sensitivity compared to average-based measures. We tested hypothesis H4 by 

comparing the results of the two reference studies: “Highway Driving and iPod 

Interactions” and “City Driving and iPod Interactions.” 

Both reference studies incorporated exactly the same secondary task: easy and 

difficult interactions with the iPod while driving. In both cases we also introduced a 
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baseline condition, which did not include any interactions and thus represented true 

unencumbered driving. The only aspect that changed between the two studies was the 

driving environment. In the first study the participants drove on a wide, three-lane 

highway road with light ambient traffic. Conversely, in the second study the participants 

drove on a narrow, two-lane city road with high volume of ambient vehicles as well as 

parallel-parked vehicles on both sides of the road. As we can see, the change in the 

environment was significant. By conducting these two reference experiments we have the 

opportunity to observe and explain the changes introduced by the environment in both 

cross-correlation and average-based measures. Since both reference studies were well 

controlled (we made an effort to minimize the number of confounding variables) and the 

driving environment was the only difference between the two, we can be fairly confident 

that it affected the majority of the differences in the observed results.  

4.2.1 Effects of Driving Environment on Visual Attention 

In this section we will observe how the change in driving environment between 

two reference studies influenced visual attention.  

If we take a look at the average PDT directed to the forward road, we can see 

that it is practically the same between the two studies. Figure 4.13 illustrates this. Dark 

gray indicates city driving, while light gray indicates driving in the highway environment. 

We conducted a two-way ANOVA in order to test whether significant differences exist 

between the two studies regarding PDT to the forward road. We used PDT as our 

independent variable, while interface type (levels: B, E, D) and environment type (levels: 

highway, city) served as independent variables. We also included an interaction term 
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interface ൈ environment in our model in order to check for the potential interaction 

between the two. Please note that for the purposes of statistical analyses we will refer to 

the three interaction types with the iPod as “interface” in order to distinguish it from the 

statistical interaction that may exist between the two independent variables: interface and 

environment. The results indicated a significant main effect of interface type 

(F(2,66)=75.8384, p<0.0001). No significant main effect has been observed for 

environment type (F(1,66)=0.775, p=0.3819). Finally, no significant interaction between 

interface and environment has been detected (F(2,66)=0.4156, p=0.6617). Based on these 

results we can conclude that the participants allocated approximately the same amount of 

visual attention towards the secondary task in each driving environment.  

 

Figure 4.13 Average PDT on the forward road observed in city and highway driving 

while interacting with the iPod. 

Since this particular iPod variant cannot be operated without looking at the 

device (it is necessary to observe the contents of the LCD screen and the buttons do not 

provide a tactile feedback when operated), visual attention directed to the road represents 

a very good proxy for how the participants actually interacted with the device. This 
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information is certainly valuable. However, in order to obtain a low level insight into 

these interactions (operating different interface types), we have to look at fine grained 

descriptors, specifically average glance duration and number of glances.  

Figure 4.14 shows the average glance duration calculated for each interface 

and environment type. Again, dark gray indicates city, while light gray indicates highway 

environment. 

 

Figure 4.14 Average glance duration directed off-road in city and highway driving while 

interacting with the iPod. 

We conducted a two-way ANOVA to explore the effects of the two 

environments on glance duration. Thus, glance duration was the dependent variable, 

while the independent variables were the same as with the PDT. The results for the 

ANOVA indicated a significant main effect for the interface type (F(2,5605)=195.4455, 

p<0.0001), a significant main effect for the environment type (F(1,5605)=25.0659, 

p<0.0001) and a significant interaction between the above independent variables 

(F(2,5605)=12.2515, p<0.0001). In order to determine the levels of interface type at 

0

0.5

1

1.5

2

B E Dav
er
ag
e 
gl
an

ce
 d
ur
at
io
n 

of
f‐
ro
ad

 [s
ec
]

interface type

city

highway



 

204 
 

which the differences in environment type occur, we proceeded with pairwise 

comparisons. We obtained significant differences in glance duration between the two 

environment types for each interface type: B (F(1,979)=5.9253, p=0.0151), E 

(F(1,1870)=64.9796, p<0.0001) and D (F(1,2756)=22.2041, p<0.0001).  

Figure 4.15 shows the average number of glances obtained for each 

environment and interface type. 

 

Figure 4.15 Average number of glances directed off-road in city and highway driving 

while interacting with the iPod. 

As before, we conducted a two-way ANOVA with the number of glances as 

the dependent variable. The results revealed a significant main effect of the interface type 

(F(2,704)=277.2689, p<0.0001), a significant main effect of the environment type 

(F(1,704)=31.9781, p<0.0001) and a non-significant interaction between the two 

variables (F(2,704)=0.8413, p=0.4316). Pairwise comparisons between two environment 

types within each level of interface type showed significant differences in all cases: B 
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(F(1,236)=9.1796, p=0.0027), E (F(1,236)=5.92, p=0.0157) and D (F(1,232)=20.3944, 

p<0.0001).  

If we would look at PDT alone, we would conclude that driving environment 

did not produce any effect on visual attention. However, based on the results obtained 

from average glance duration and number of glances we can conclude that the 

environment did actually influence visual attention significantly. Namely, if we consider 

glance duration alone, we can see that during highway driving the participants made 

longer glances off-road compared to when they drove in the city. On the other hand, the 

participants glanced less frequently (smaller number of glances) away from the road in 

the case of highway road compared to city road. In other words, the participants cast 

larger number of shorter glances away from the road in the city environment and smaller 

number of longer glances in the highway environment. Based on these results we can 

conclude that the participants considered the highway environment to be more 

“forgiving” towards reduced visual attention (at least at the level of individual glances), 

as opposed to the city environment. These results also explain why the overall visual 

attention to the forward road appeared to be the same, as judged by PDT. Therefore, we 

can conclude that H4 is in fact satisfied with respect to visual attention results. 

4.2.2 Effects of Driving Environment on Average-Based 

Driving Performance Measures 

We can also look at the environmental impact through average-based driving 

performance measures, specifically variances of lane position, steering wheel angle and 

velocity. Note that comparing average velocity between the two driving environments is 
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not possible, given different speed limits (highway = 55 MPH, city = 40 MPH). Figures 

4.16, 4.17 and 4.18 show the average variances of steering wheel angle, lane position and 

velocity for the two reference studies.  

 

Figure 4.16 Average steering wheel angle variance in city and highway driving while 

interacting with the iPod. 

 

 

Figure 4.17 Average lane position variance in city and highway driving while interacting 

with the iPod. 
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Figure 4.18 Average velocity variance in city and highway driving while interacting with 

the iPod. 

Regarding steering wheel angle variance, a two-way ANOVA indicated a 

significant main effect of interface type (F(2,66)=19.6844, p<0.0001), a non-significant 

effect of environment type (F(1,66)=1.3282, p=0.2533) and a non-significant interaction 

between the two (F(2,66)=0.5552, p=0.5766). Regarding lane position variance, a two-

way ANOVA indicated a significant main effect of environment type (F(1,66)=23.2034, 

p<0.0001), but not interface type (F(2,66)=2.111, p=0.1292) or the interaction between 

the two independent variables (F(2,66)=0.5693, p=0.5687). Finally, regarding velocity 

variance, a two-way ANOVA indicated a significant main effect of environment type 

(F(1,66)=4.0704, p=0.0477), a significant main effect of interface type (F(2,66)=6.3766, 

p=0.0029), and a non-significant interaction between the two (F(2,66)=0.3434, 

p=0.7106). As we can see, variances of lane position and velocity were more sensitive to 

changes in the driving environment compared to steering wheel angle. 

Since average variances of both lane position and velocity detected a 

significant effect of environment type, we proceeded with pairwise comparisons within 
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interface types. Significantly larger lane position variances were detected while driving 

on the highway for all interface types: B (F(1,22)=7.8181, p=0.0105), E (F(1,22)=4.3797, 

p=0.0481) and D (F(1,22)=11.6291, p=0.0025). This agrees with Zhang et al. [30], who 

found that the variation of lane position was larger on highways than on rural roads. In 

case of velocity, a significantly larger variance has been observed in highway driving for 

B (F(1,22)=5.1677, p=0.0331), but not in case of E (F(1,22)=0.8358, p=0.3705) or D 

(F(1,22)=0.4583, p=0.5055) conditions. 

Even though steering wheel angle variance did not detect a significant effect of 

the environment, it is interesting to note that it was typically higher in the city (at least for 

B and D, see Figure 4.16). On the other hand lane position variance was higher on the 

highway for all interface types. This suggests that the participants expended higher effort 

in order to keep the vehicle in the middle of the lane when driving in the city 

environment. This finding is sound given the high volume of ambient traffic, narrower 

streets and parked vehicles present in the city environment. Nevertheless, we do not 

possess a specific evidence for this argument given the lack of significant effect on 

steering wheel angle variance. We can also see that participants’ velocity varied more 

while driving on the highway. It is possible that participants found the highway road less 

demanding and therefore they invested less effort to keep a constant distance (gap) 

behind the lead vehicle. 

Based on these results we can say that hypothesis H4 is mostly supported by 

the average-based driving performance measures, specifically variances of lane position 

and velocity. However, the variance of steering wheel angle was not sensitive enough to 

detect differences between the two driving environments. 
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4.2.3 Effects of Driving Environment on Cross-Correlation 

Results 

The effects of the driving environment can be seen clearly in our cross-

correlation results. Larger number of glances directed away from the road in the city 

environment produced larger cumulative effects on steering wheel angle cross-correlation 

results compared to the highway (compare Figures 3.33 and 4.7). Please note, however, 

that the number of glances is not the sole contributor to the cumulative result, since we 

demonstrated using our per-glance cross-correlation results that the effects of individual 

glances depend on the performed activity (in other words, they differ between B, E and D 

conditions). We can see the same trend regarding per-glance steering wheel angle cross-

correlation functions: higher cross-correlation peaks in the city compared to the highway. 

However, the effect was opposite in case of cumulative and per-glance cross-correlation 

functions for lane position: higher peaks have been observed on the highway compared to 

the city. This result provides evidence for our argument stated in the previous section: the 

participants were expending higher effort on the steering wheel in order to keep the 

vehicle in the center of the lane on the city road (due to environment complexity) which 

resulted in smaller changes in lane position. On the other hand, on the highway, the 

participants invested less effort on the steering wheel (due to simpler driving 

environment) which resulted in larger changes in the lane position. This result is very 

important, because it provides another source of support that our method can provide 

more sensitivity compared to average-based driving performance measures. 

In order to test the significance of the observed effect of driving environment 

on our cross-correlation results we conducted several two-way ANOVAs. We used the 
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magnitudes of the most prominent cross-correlation peaks (both cumulative and per-

glance for steering wheel angle and lane position) as our dependent variable, while 

environment type, interface type and interface ൈ environment were used as independent 

variables. Table 4.4 gives the details of the statistical analyses. As we can see for each 

cross-correlation result there is a significant effect of all independent variables. It is 

valuable to note that the effect of the environment was always significant, which 

confirmed our expectations based on the obtained results. 

Cross-
correlation 

method 
Variable 

Steering wheel angle Lane position 

F-value p-value F-value p-value 

cumulative 

environment F(1,704)=46.0266 < 0.0001 F(1,704)=17.9677 < 0.0001
interface F(2,704)=165.7317 < 0.0001 F(2,704)=223.7631 < 0.0001

environment 
x 

interface 
F(2,704)=11.5925 < 0.0001 F(2,704)=5.2674 0.0054 

per-glance 

environment F(1,676)=36.1101 < 0.0001 F(1,676)=74.1802 < 0.0001
interface F(2,676)=50.0705 < 0.0001 F(2,676)=47.592 < 0.0001

environment 
x 

interface 
F(2,676)=3.7742 0.0234 F(2,676)=3.6415 0.0267 

Table 4.4 Results of two-way ANOVAs for cumulative and per-glance cross-correlation 

results. 

In order to examine at which levels of the interface type there exist significant 

differences between the two environment types, we proceeded with pairwise 

comparisons. Table 4.5 gives an overview of the magnitudes of the most prominent 

cumulative and per-glance cross-correlation peaks for both studies. The “comparison” 

column indicates which study produced a larger cross-correlation result for each interface 

type, while the “p-value” column indicates whether the comparison is significant or not 
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(p-values smaller than 0.05 are presented in bold face). As we can see both cumulative 

and per-glance steering wheel angle cross-correlation results are consistently larger in the 

city environment, while in case of lane position highway environment produced 

consistently larger results. Practically all comparisons indicated significant differences, 

except for cumulative lane position cross-correlation results for B condition (p=0.868) 

and per-glance steering wheel angle cross-correlation results for E condition (p=0.1421). 
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cumulative 

B 3.647 < 7.714 0.0001 0.157 > 0.1539 0.868 

E 13.88 < 18.19 0.0371 0.4291 > 0.334 0.0208

D 24.7 < 41.6 0.0001 0.7903 > 0.6182 0.0002

per-glance 

B 0.9405 < 1.613 0.0001 0.04415 > 0.03267 0.0001

E 1.798 < 2.096 0.1421 0.05438 > 0.04098 0.0001

D 2.136 < 3.165 0.0001 0.07199 > 0.04914 0.0001

Table 4.5 Comparing magnitudes of most prominent cross-correlation peaks for two 

reference studies. 

Based on the above results we can conclude that hypothesis H4 is supported, 

since our cross-correlation method managed to detect differences between the two 

driving environments. 

By observing the magnitudes of the most prominent peaks in both cumulative 

and per-glance cross-correlation results, we can see that the ordering is the same in both 

driving environments: D condition resulted in the largest effect, followed by E and B 

conditions. However, it would also be interesting to compare relative sizes of the effects 
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of each interface type within each environment type. Table 4.6 shows the ratios of the 

magnitudes of the most prominent peaks in both cumulative and per-glance cross-

correlation results between interface types for each environment type. If we compare the 

ratios between the highway and city environment we can see that they are mixed for both 

steering wheel angle and lane position cross-correlation results. However, the magnitudes 

of the ratios are fairly similar. This indicates that, even though the differences in absolute 

amplitudes do exist, the change in the environment did not affect highly the relative 

differences between interface types within each environment. Larger ratios observed for 

steering wheel angle compared to lane position can be explained by steering wheel 

angle’s faster dynamics, as we discussed in Chapter 3.  

  Steering wheel angle Lane position 

Cross-
correlation 

method 
Ratio Highway 

C
om

pa
ri

so
n 

City Highway
C

om
pa

ri
so

n 
City 

cumulative 

D/B 6.77 > 5.39 5.03 > 4.02 

D/E 1.78 < 2.29 1.84 < 1.85 

E/B 3.81 > 2.36 2.73 > 2.17 

per-glance 

D/B 2.27 > 1.96 1.63 > 1.5 

D/E 1.19 < 1.51 1.32 > 1.2 

E/B 1.91 > 1.3 1.23 < 1.25 

Table 4.6 Relative differences between interface types in both environments. 
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4.2.4 Comparing Average-Based Driving Performance 

Measures and Cumulative Cross-Correlation Results 

As a conclusion to this section we would like to discuss how our cumulative 

cross-correlation results compare to average-based measures. This comparison is sound, 

since average-based measures also reflect the overall effects of in-vehicle interactions on 

driving. In both iPod studies we had a chance to see that at least some of the average-

based driving performance measures reached significance. However, significant 

differences between interface types were detected more often in city driving. As we can 

see in Table 4.7 variances of steering wheel angle and velocity detected differences 

between all three interfaces (iPod interactions) in city driving. On the other hand, in 

highway driving variance of steering wheel angle was the only average-based 

performance measure which detected differences between all interface types. This finding 

can be explained by the increase in difficulty caused by the city environment, thus 

resulting in in-vehicle interactions producing larger effects that were successfully 

detected by the average-based measures. The ranking of measures that reached 

significance matches the ranking observed with our cumulative cross-correlation results, 

which provides clear support for construct validity. Nevertheless, there exist average-

based measures which either did not reach significance (such as average velocity in 

highway driving and lane position variance in city driving) or did not detect differences 

between all interface types (lane position variance and velocity variance in highway 

driving and average velocity in city driving); however, the differences between all 

interface types were successfully detected using our cross-correlation method.  
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   Pairwise comparisons 

Study Average-based measure Main effect? B - E B - D E – D 

highway 

lane position variance YES NO NO YES 

steering wh. angle variance YES YES YES YES 

velocity variance YES NO NO YES 

average velocity NO    

city 

lane position variance NO    

steering wh. angle variance YES YES YES YES 

velocity variance YES YES YES YES 

average velocity YES NO NO YES 

Table 4.7 Comparison of significant effects detected using average-based measures for 

the two reference studies. 

4.3 Obtaining Predictors of Cross-Correlation Results 

Many of the conclusions from the previous section directly facilitate the 

process of explaining the underlying mechanisms of the cross-correlation method. Also, 

the way we conducted the two iPod studies (i.e., the reference experiments approach) and 

the highly controlled environments without (or at least minimized) confounding variables 

help significantly with drawing conclusions.  

The purpose of this section is to propose a set of variables (predictors) which 

may have an important influence on the cross-correlation results. We expect that the same 

set of predictors will be revealed in both reference studies. Therefore, we will analyze 

both studies separately; however, we will use the same procedure. Furthermore, we will 

pool the data together in order to observe the effect of the driving environment as well.  

Our method produces two types of cross-correlation results: cumulative and 

instance-based (per-glance in our case). Since our method relies on visual attention and 
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driving performance, we should devise a set of variables that describe both of these 

aspects well. In hypothesis H3 we proposed to examine the following variables: PDT 

away from the road, number of glances, glance duration and average absolute amount of 

change in lane position, steering wheel angle and vehicle heading. However, the 

predictors do not have to be the same for both types of cross-correlation results. The 

following paragraphs will provide explanations behind our decisions for the particular 

choice of variables.  

4.3.1 Describing Visual Attention 

Horrey et al. [15] found that the variability of lane position increased as the 

scanning of the outside world (PDT on outside world) decreased. This relationship 

suggests that PDT may be an important variable to consider in explaining the cumulative 

cross-correlation results. Namely, PDT describes the overall visual attention on an 

experimental segment. Similarly, cumulative cross-correlation describes the overall 

change in driving performance measures (in our case, lane position and steering wheel 

angle) influenced by overall visual attention over the same segment. Therefore, we can 

argue that they have the same “underlying” nature and that PDT may have a significant 

influence on the obtained results. In our analysis we propose to use PDT away from the 

road (as opposed to Horrey et al. who used PDT on the outside world), which can be 

obtained directly from PDT on the outside world as follows:  

ܦܲ ܶ௪௬__ௗ ൌ 100 െ ܦܲ ܶ௨௧௦ௗ_௪ௗ. 

Alternatively, instead of using PDT away from the road, we can 

simultaneously use glance duration and number of glances directed away from the road. 
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These two variables provide low level description of the visual attention. However, when 

looking at the overall visual attention, knowing either PDT or glance duration + number 

of glances is sufficient. This can be demonstrated using a simple example. Let us assume 

that we have ܰ glances, each  seconds long, on a ݐ seconds long segment. Knowing all 

this we can calculate the PDT away from the road for that segment as: 

ܦܲ ܶ௪௬__ௗ ൌ
ܰ · 
ݐ · 100%. 

In reality, of course, glances are not of equal duration. Nevertheless, the above example 

illustrates the approximate (at least asymptotical) equivalence of the information 

provided by PDT and glance duration + number of glances. Therefore, using all three 

variables concurrently in describing cumulative cross-correlation results would not 

provide any additional information and would likely cause multicollinearity.  

If we look at instance-based (per-glance) cross-correlation result, it provides 

information about the change in driving performance influenced by individual instances 

of secondary task engagement. In our case those are individual glances directed away 

from the road. Neither PDT nor number of glances would be adequate variables for 

characterizing per-glance cross-correlation results, since they describe overall visual 

attention. However, glance duration describes individual glances (instances of secondary 

task engagement). Therefore, we will use glance duration in our models for 

characterizing per-glance cross-correlation results. 
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4.3.2 Describing Driving Performance 

Since our method has been applied to lane position and steering wheel angle, it 

is logical to expect that these variables may be useful in characterizing our cross-

correlation results. Therefore, we will use both of these variables in our analyses.  

One additional variable which we expect may have an important influence is 

vehicle heading. Vehicle heading represents the angle between the tangential direction of 

the vehicle and north direction. Vehicle heading is measured in degrees and has positive 

values in the counter-clockwise direction and negative values in the clockwise direction. 

In our driving simulator, if the vehicle is perfectly aligned with the north direction, its 

heading equals 0°. The reason we believe that vehicle heading may be important is that 

drivers may decide to apply a different amount of change on the steering wheel 

depending on the heading of the vehicle. This is of course true for lane position as well. 

However, a driver can drive close to the edge of the road or the opposite lane indefinitely 

without the need to change the position of the vehicle. On the other hand, unsatisfactory 

vehicle heading (yaw too far to the left or right) may provide additional incentive for 

correcting the position in the lane.  

A certain amount of redundancy can be expected between these three 

variables, since all of them are impacted by the changes on the common controller – 

steering wheel. However, cases exist when the information obtained by vehicle heading 

may complement the information obtained from steering wheel angle and lane position. 

Figure 4.19 illustrates this. Let us assume, without the loss of generality, that the road is 

perfectly aligned with the north direction. We can devise four possible cases: 
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a) If the vehicle is parallel to the road and steering wheel angle is fixed at 0°: both 

lane position and vehicle heading are not changing (Figure 4.19, upper left). 

b) If the vehicle is not parallel to the road and steering wheel angle is fixed at 0°: 

lane position is changing, vehicle heading is not changing (Figure 4.19, upper 

right). 

c) If the steering wheel angle is fixed at some value different than 0°: both lane 

position and vehicle heading are changing (Figure 4.19, lower left).  

d) If the steering wheel angle is changing: both lane position and vehicle heading are 

changing (Figure 4.19, lower right). 

 

Figure 4.19 Illustration of the relationships between steering wheel angle, lane position 

and vehicle heading. 
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The examples presented in Figure 4.19 illustrate when vehicle heading may 

complement the information obtained from steering wheel angle and lane position. As we 

can see, cases a) and d) illustrate when all three variables behave in the same fashion: 

either not change or change together. However, in b) vehicle heading may provide 

additional information since it is not changing while lane position is. Similarly, in c) 

steering wheel angle is not changing while vehicle heading is. Based on these examples 

we decided to include vehicle heading in our analyses. 

4.3.3 Data Collection 

Regression analysis requires two types of variables: independent (or predictor) 

variables, which are used for predicting the response of a dependent variable. The 

following sections will describe both independent and dependent variables that will be 

used in our regression analyses.  

Independent Variables 

PDT away from the road: If ܰ is the total number of samples in the current 

segment and ܲ is the number of samples indicating looking away from the road, then 

PDT away from the road (PDT_AFR) can be calculated as follows: 

ܴܨܣ_ܶܦܲ ൌ
ܲ
ܰ · 100%. 

No transformation is necessary here, since PDT already provides a single value which 

characterizes the whole segment. 

Number of Glances: As its name suggests, number of glances (NG) was 

obtained simply by counting the total number of glances directed off-road for each 
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segment. Therefore, no further transformation is necessary. Note that all the rules for 

filtering glances explained in Section 3.1.2 apply here as well. 

Glance duration: Since in general multiple glances may occur on any segment, 

average value is the appropriate transformation to be used. If ܯ is the total number of 

glances in the current segment and ݃ is the duration of the ݅௧ glance, then the average 

glance duration (AGD) can be obtained as follows: 

ܦܩܣ ൌ
1
ܯ ·݃

ெ

ୀଵ

. 

Driving performance: If we recall from Chapter 3, we transformed steering 

wheel angle and lane position using the absolute value of change (AVC) function before 

applying cross-correlation. To be consistent with this choice of transformation, we 

decided to apply the same type of transformation to all three driving performance 

measures (steering wheel angle, lane position and vehicle heading). However, in order to 

obtain a single descriptive value per segment for each driving variable, we also averaged 

the result obtained from AVC. We will refer to this transformation as the average 

absolute value of change (AAVC) and for an arbitrary sequence ݔ it is defined as follows: 

ሽݔሼܥܸܣܣ ൌ
1

ܰ െ 1 ·
ሺ݊ሻݔ| െ ሺ݊ݔ െ 1ሻ|

௦ܶ

ே

ୀଶ

, 

where ܰ is the length of sequence ݔ and ௦ܶ is the sampling period. This particular 

transformation is similar in nature to standard deviation, which may be used as a possible 

alternative. 
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Dependent Variables 
Since we intend to provide explanations for both cumulative and per-glance 

cross-correlation results, each approach provides one corresponding dependent variable. 

We will refer to the variable which holds the cumulative result as XCORR_CML_X and 

the per-glance result as XCORR_PG_X, where “X” refers to either steering wheel angle 

(SWA) or lane position (LP).  

Since cross-correlation functions (both cumulative and per-glance) represent 

time series data, a suitable transformation is required in order to obtain a unique value 

which characterizes each experimental segment. Inspired by our “area below the curves” 

approach presented in Section 3.1.5, we decided to calculate the areas below the cross-

correlation functions for each segment. Prominent peaks provide a convenient visual 

representation of the cross-correlation results through their magnitude and time lag. 

However, there are two reasons we decided to use areas rather than magnitudes of the 

peaks in our regression models. First, areas consider a wider time interval after the gaze 

returns back to the road, while peaks consider only individual instants in time. Since we 

had a chance to see that there is usually a range of lags (around the most prominent peak) 

for which the cross-correlation functions are significant (larger than the p=0.05 level), we 

can say that areas can extract more information about the changes in driving performance 

over time. And second, the most prominent peaks in our cross-correlation results 

represent average changes in our driving performance measures which we obtained over 

a number of experimental segments. However, the individual peaks do not have to occur 

at exactly the same location as the most prominent peak. Therefore, areas can account for 

these differences in individual segments. We also have to notice that both prominent 

peaks and areas always revealed the same ranking of the interaction types in all previous 
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studies, which indicates that both approaches provide the same conclusions. For each 

segment we decided to calculate areas below the cross-correlation functions between the 

lags of 0 and 1 second. The decision to consider this interval is supported by the fact that 

the most prominent peaks for both lane position and steering wheel angle cross-

correlation functions on average occurred around the lag of 0.6 seconds. 

Summary of Selected Variables 
Before we delve into the data preparation for regression analyses, we 

summarize the above independent variables in Table 4.8.  

   Cross-correlation function

Variable name Transformation Abbreviation Cumulative Per-glance 

PDT Away From 
Road - PDT_AFR D  

Number of Glances - NG D  

Glance Duration average AGD D D 

Steering Wheel 
Angle AAVC AAVC_SWA D D 

Lane Position AAVC AAVC_LP D D 

Vehicle Heading AAVC AAVC_VH D D 

Table 4.8 Overview of the proposed independent variables and their corresponding 

transformations used in regression analyses. 

The check marks in Table 4.8 indicate which variables are used in predicting 

the results for each cross-correlation method (cumulative and per-glance). As stated 

before, for cumulative cross-correlation results, either PDT or glance duration + number 

of glances should be used in the regression models, but not both of those concurrently. 

The “transformation” column indicates a specific transformation function which was 



 

223 
 

applied to each variable. The “abbreviation” column gives the short names of the final 

(transformed) variables as will be used in the regression models. 

Each of the above variables was obtained for each experimental segment. 

Since each of 12 participants completed 10 experimental segments, this amounts to a total 

of 120 potential segments that are available for the analyses of each experimental 

condition (B, E and D). Therefore, every segment ݏ ሺ݅ ൌ 1,… ,120ሻ can be characterized 

with a set of values, one for each of the above variables:  

ݏ ՜ ሼܴܲܨܣ_ܶܦ, ,ܩܰ ,ܦܩܣ ,ܣܹܵ_ܥܸܣܣ ܮ_ܥܸܣܣ ܲ,   .ሽܪܸ_ܥܸܣܣ

Some variables, such as PDT and number of glances, by definition provide only a single 

value for each segment. However, driving performance variables, for example, are time 

series data, which cannot be used directly. Therefore, appropriate transformation had to 

be applied first in order to obtain a single-value description of an experimental segment. 

Note that the same set of variables and the corresponding procedure were used in both 

reference studies. 

4.3.4 Data Conditioning for Regression Analysis 

There are two main steps that we performed in conditioning the data for 

regression analysis: normalizing distributions of variables and handling outliers. 

Normalizing Distributions of Variables 
Regression analysis does not require independent variables to be normally 

distributed. Nevertheless, skewed distributions often cause statistical problems, such as 

heteroscedasticity and influence [132]. Therefore, we decided to apply appropriate 
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transformations to each variable in order to bring their distributions as close as possible to 

“normal” looking.  

All of the variables we are using in this analysis are positively skewed, which 

means that they have a long upper tail. Skewed distributions can often be “normalized” 

by applying power transformations [132]. There are at least two advantages to using 

power transformations: they make skewed distributions more symmetrical and also may 

pull in outliers. Let us say that ܺ is our independent variable, ݍ is the power exponent and 

ܺᇱ ൌ ܺ is the transformed original variable. Depending on the exponent ݍ we can obtain 

different effects: ݍ  1 reduces negative skew by shifting the weight to the upper tail, 

while ݍ ൏ 1 reduces positive skew by pulling in the upper tail. Since we are dealing with 

positively skewed variables, ݍ ൏ 1 was the appropriate choice in each case. We have to 

note that logarithmic transformation (log ሺܺሻ) is also very commonly used. However, in 

our case it was too powerful and often resulted in shifting the distributional shape from 

positive to negative skew. Therefore, we used power transformations only.  

As suggested in [132], we can judge how close to normal a symmetrical 

distribution is, by comparing its standard deviation with 1.35/ܴܳܫ. IQR represents the 

interquartile range and is calculated as the difference between the third and first quartile. 

If the standard deviation of the given variable is similar to 1.35/ܴܳܫ we can say that its 

distribution has tails which are close to normal. We used this as a benchmark to judge 

which power transformation provided an acceptable result for each variable. 

Table 4.9 outlines the exponents (ݍ) of power transformations (ܺ) that have 

been applied to each variable (ܺ) in both reference studies for cumulative and per-glance 

cross-correlation results.  
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  Cumulative (CML) Per-glance (PG) 

Variable name Abbreviation City Highway City Highway

PDT Away From 
Road PDT_AFR 0.5 0.4 - - 

Glance Duration AGD 0.9 0.8 0.6 0.2 

Number of Glances NG 0.8 0.7 - - 

Steering Wheel 
Angle AAVC_SWA 0.4 0.2 0.5 0.3 

Lane Position AAVC_LP 0.2 0.3 0.2 0.3 

Vehicle Heading AAVC_VH 0.4 0.2 0.4 0.2 

Steering wheel angle 
cross-correlation 

XCORR_(CML or 
PG)_SWA 0.4 0.3 0.5 0.4 

Lane position cross-
correlation 

XCORR_(CML or 
PG)_LP 0.5 0.4 0.5 0.6 

Table 4.9 Exponents of power transformations used for normalizing the data. 

Missing exponents in Table 4.9 indicate that the corresponding variables were 

not used in creating the regression model for that particular cross-correlation result. The 

exponents differ between the variables, because their distributions had different levels of 

skew. Note that the transformations applied to common independent variables between 

the “cumulative” and “per-glance” columns do not have to be exactly the same, because 

cumulative and per-glance cross-correlation results may not use the same experimental 

segments in their calculations. Specifically, since per-glance cross-correlation results 

provide the amount of change in a driving performance variable introduced by individual 

glances, segments with no off-road glances are not used in the calculations. On the other 

hand, cumulative cross-correlation results include all segments in the calculations, since 

they provide an overall response. Nevertheless, we can see that the exponents are mostly 

similar between the two. 
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Handling Outliers 
As we mentioned in the previous subsection, power transformations can also 

pull in outliers. Nevertheless, we still had to check for the existence of outliers that 

remained after applying the transformations. Since we proposed to use multiple variables 

in devising our regression models, we have to look at the outliers from the multivariate 

perspective. In other words, a data point may not be an outlier when looked at from the 

univariate standpoint, but can be an outlier when looked at from the multivariate 

standpoint. One widely used method for multivariate outlier detection is Mahalanobis 

distance [133]. This method identifies unusual data points that lie far from the 

multivariate center of the data, which we subsequently rejected as outliers. Using JMP 

9.0 we applied this method to all of our variables. 

Observing Distributions of the Transformed Variables 
Figures 4.20 and 4.24 depict distributions of independent variables which were 

used in modeling the cumulative cross-correlation results for highway and city study, 

respectively. Distributions of their respective dependent variables are presented in 

Figures 4.21 and 4.25.  

Similarly, Figures 4.22 and 4.26 present distributions of independent variables 

used in modeling per-glance cross-correlation results for highway and city study, 

respectively. Their corresponding dependent variables are depicted in Figures 4.23 and 

4.27.  

Each figure is organized as a table with cells showing distributions of 

individual variables. Graphs marked with “O” represent original data, while “T” indicates 
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transformed and outlier-free data. Transformed data is used in the next section for 

creating regression models.  

PDT_AFR AGD 

NG AAVC_SWA 

AAVC_LP AAVC_VH 

Figure 4.20 Highway study: distributions of independent variables used for modeling 

cumulative cross-correlation results. 

Each graph contains three plots: normal quantile plot (top), box plot (middle) 

and histogram (bottom). If a distribution is close to normal, we expect its histogram and 
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box plot to be approximately symmetric and the normal quantile plot to approximately 

follow a straight line (secondary diagonal line in each graph). As we can see, power 

transformations considerably improved normality of all variables. 

XCORR_CML_SWA XCORR_CML_LP 

Figure 4.21 Highway study: distributions of dependent variables used for modeling 

cumulative cross-correlation results. 
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AGD AAVC_SWA 

AAVC_LP AAVC_VH 

Figure 4.22 Highway study: distributions of independent variables used for modeling 

per-glance cross-correlation results. 

 

XCORR_PG_SWA XCORR_PG_LP 

Figure 4.23 Highway study: distributions of dependent variables used for modeling per-

glance cross-correlation results. 
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PDT_AFR AGD 

NG AAVC_SWA 

AAVC_LP AAVC_VH 

Figure 4.24 City study: distributions of independent variables used for modeling 

cumulative cross-correlation results. 
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XCORR_CML_SWA XCORR_CML_LP 

Figure 4.25 City study: distributions of dependent variables used for modeling 

cumulative cross-correlation results. 

 

AGD AAVC_SWA 

AAVC_LP AAVC_VH 

Figure 4.26 City study: distributions of independent variables used for modeling per-

glance cross-correlation results. 
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XCORR_PG_SWA XCORR_PG_LP 

Figure 4.27 City study: distributions of dependent variables used for modeling per-

glance cross-correlation results.  
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4.3.5 Creating Regression Models for Reference Studies 

This section presents the regression models which were created using the 

transformed variables described in the previous section. There are eight regression 

models in total, one for each combination of environment (highway, city), cross-

correlation result (cumulative, per-glance) and driving performance variable (steering 

wheel angle, lane position).  

Regression models strip away the random errors or noise thus revealing the 

underlying relationship between regressors (independent variables) and the response 

(cross-correlation results). As suggested in Section 4.3.1 (pg. 215), we can use either 

PDT_AFR or AGD + NG in modeling cumulative cross-correlation results. The first 

model (we will refer to it as CML_M1_X, where “X” represents SWA or LP) uses the 

following regression equations for modeling the cumulative cross-correlation results: 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ܽ  ܽଵ · ܴܨܣ_ܶܦܲ  ܽଶ · ܣܹܵ_ܥܸܣܣ  ܽଷ ·  ܪܸ_ܥܸܣܣ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ ܾ  ܾଵ · ܴܨܣ_ܶܦܲ  ܾଶ · ܲܮ_ܥܸܣܣ  ܾଷ ·  ܪܸ_ܥܸܣܣ

Equation 4.1 Modeling cumulative cross-correlation results using CML_M1_X model. 

 

The alternative model using AGD and NG (we will refer to it as CML_M2_X) 

can be defined as follows: 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ܿ  ܿଵ · ܦܩܣ  ܿଶ · ܩܰ  ܿଷ · ܣܹܵ_ܥܸܣܣ  ܿସ ·  ܪܸ_ܥܸܣܣ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ ݀  ݀ଵ · ܦܩܣ  ݀ଶ · ܩܰ  ݀ଷ · ܲܮ_ܥܸܣܣ  ݀ସ ·  ܪܸ_ܥܸܣܣ

Equation 4.2 Modeling cumulative cross-correlation results using CML_M2_X model. 
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Similarly, the regression equations used for modeling the per-glance cross-

correlation results (we will refer to this model as PG_M_X) are as follows: 

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ ݁  ݁ଵ · ܦܩܣ  ݁ଶ · ܣܹܵ_ܥܸܣܣ  ݁ଷ ·  ܪܸ_ܥܸܣܣ

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ ݂  ଵ݂ · ܦܩܣ  ଶ݂ · ܲܮ_ܥܸܣܣ  ଷ݂ ·  ܪܸ_ܥܸܣܣ

Equation 4.3 Modeling per-glance cross-correlation results using PG_M_X model. 

 

We expect that all of the above variables will positively contribute to the cross-

correlation results (both cumulative and per-glance). In other words, as the values of 

these variables increase, the cross-correlation results are expected to increase as well. 

Therefore, we expect that all of the above coefficients associated with these variables 

should result with positive signs. 

All regression analyses were performed in JMP 9.0 using the following steps 

for each cross-correlation model (cumulative and per-glance) and each study (city and 

highway): 

1. Fit the largest possible regression model using all of the variables proposed in the 

above equations. 

2. This step is concerned with checking the influence of the individual observations 

(data samples) on the fitted regression models and consists of multiple steps 

which should be observed in concert:  

a. Check for high leverage points using hat diagonals. Hat diagonals determine 

the amount of weight each observation has on its own prediction. A high 

leverage value close to 1 indicates that an observation entirely predicts itself, 
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which is not desirable in general. Although high leverage points have the 

potential to bias or distort the regression model estimates, they are not 

necessarily bad data points. If the high leverage points are valid data points, 

their presence can actually improve the regression model. However, if a high 

leverage point is an outlier, the fitted model may be biased in its predictions. 

The existence of outliers is checked by observing the distribution of the 

studentized residuals presented in step 3c. High leverage points can also be 

influential, which is checked with the Cook’s D statistic in step 3b. 

b. Use Cook’s D statistic to identify influential points. Cook’s D value is 

calculated for each observation point. It measures how much the model 

coefficient estimates would change if the ݅௧ observation were to be removed 

from the dataset. The higher the Cook’s D value, the higher the influence. 

Values above 1 indicate some influence, while values in 3 and 4 digits 

indicate extreme influence. 

c. Check for outliers by observing the distribution of the studentized residuals. 

Values far from ±3 indicate potential outliers.  

d. If all of the data samples have the above statistics within the proposed limits, 

we can conclude that no obvious problems with the dataset exist and we can 

continue with the process of obtaining the best regression model. If a data 

sample is a high leverage point (based on hat diagonals) and an outlier (based 

on studentized residuals), we remove it from the dataset. If a data sample is an 

influential point (based on Cook’s D), we have to check both studentized 

residuals and the raw data and if it proves to be an outlier we remove it from 
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the dataset. After excluding the above data samples, we fit the regression 

models again using the remaining data samples.  

3. Examine the significance of each regression coefficient (ܽ, ܾ, ܿ, ݀, ݁, ݂) and 

keep the variables whose coefficients are significant at the p=0.05 level in the 

model. If any of the variables should be removed from the model, we fit the 

model again (with the smaller subset of variables) in order to obtain new 

coefficient estimates. 

4. Check for normality of residuals by plotting the normal quantile plot for the 

studentized residuals. If the plot approximates a straight line, we can conclude 

that the normal assumption is satisfied. This is the most important assumption for 

the regression analysis. 

5. Check for heteroscedasticity by plotting residuals versus predicted values. If the 

points presented in this graph are approximately randomly dispersed around 0 (on 

vertical axis), it indicates that heteroscedasticity is not an issue. Furthermore, the 

lack of nonrandom patterns indicates that the model has no missing variables. 

6. Check for multicollinearity among the regressors in the model by observing the 

variance inflation factor (VIF) statistic. VIF measures how much the variance of a 

coefficient estimate is inflated by multicollinearity. VIF values larger than 30 

indicate considerable multicollinearity, while values in 3 and 4 digits indicate 

severe multicollinearity.  

7. Finally, in reporting the results of each regression analysis, we will use the 

following:  
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a) Adjusted coefficient of determination (ܴଶ), which represents the proportion of 

variance in the dependent variable that is explained by the regression model.  

b) Coefficient estimates (ܽ, ܾ, ܿ, ݀, ݁, ݂) in our regression equations.  

c) p-values, which indicate whether a particular coefficient is statistically 

significant (in our case, we use p<0.05).  

d) Standardized betas, which represent the coefficient estimates that would have 

been obtained from the regression if all the variables were standardized to a 

mean of 0 and variance of 1 [132]. As such, they show how many standard 

deviations a dependent variable would change per 1 standard deviation change 

in a particular independent variable (everything else being equal). Thus, they 

are often used in multiple regression analyses to determine which variables 

have a higher effect on the dependent variable, when the variables have 

different units of measurement. 

e) VIF values for checking multicollinearity. 

The above procedure did not reveal any problems with the datasets used for 

modeling any of our cross-correlation results. No high leverage or influential points have 

been observed. The distributions of studentized residuals resembled normal distribution 

and residuals versus predicted plots indicated no obvious problems with 

heteroscedasticity and missing variables. All VIF values are much smaller than 30, 

indicating no issues with multicollinearity. In order to make the following sections easier 

to read, we include the graphs for studentized residuals and residuals versus predicted 

plots in Appendix C. The following sections outline the results of the regression analyses.
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Modeling Cumulative Cross-Correlation Results in Highway Study 
Cumulative steering wheel angle cross-correlation models: The following models for 

cumulative steering wheel angle cross-correlation results are analyzed here 

(CML_M1_SWA and CML_M2_SWA): 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ܽ  ܽଵ · ܴܨܣ_ܶܦܲ  ܽଶ · ܣܹܵ_ܥܸܣܣ  ܽଷ ·  ܪܸ_ܥܸܣܣ

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ܿ  ܿଵ · ܦܩܣ  ܿଶ · ܩܰ  ܿଷ · ܣܹܵ_ܥܸܣܣ  ܿସ ·  ܪܸ_ܥܸܣܣ

 

Table 4.10 shows the results of the analysis for CML_M1_SWA model. The 

model provided a very good fit, with approximately 91% of variance explained. All 

coefficient estimates are positive and significant (significant coefficients will be 

presented in bold face in all tables).  

CML_M1_SWA R2 = 0.91   Highway 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܽ -4.6048 < 0.0001 - - 

PDT_AFR ܽଵ 0.8923 < 0.0001 0.6644 1.4193 

AAVC_SWA ܽଶ 4.3857 < 0.0001 0.3642 5.0643 

AAVC_VH ܽଷ 2.347 0.0107 0.1056 5.9073 

Table 4.10 Highway study: Coefficient estimates for CML_M1_SWA model. 

 

Similarly, Table 4.11 shows the results for CML_M2_SWA model. The model 

explained about 93% of variance and all coefficient estimates are positive and significant. 
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CML_M2_SWA R2 = 0.93   Highway 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܿ -4.0305 < 0.0001 - - 

AGD ܿଵ 0.778 < 0.0001 0.1472 1.5545 

NG ܿଶ 0.4932 < 0.0001 0.6084 2.0849 

AAVC_SWA ܿଷ 4.0823 < 0.0001 0.339 5.0713 

AAVC_VH ܿସ 1.8279 0.0213 0.0822 5.9129 

Table 4.11 Highway study: Coefficient estimates for CML_M2_SWA model. 

 

Cumulative lane position cross-correlation models: The following models for cumulative 

lane position cross-correlation results are analyzed here (CML_M1_LP and 

CML_M2_LP): 

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ ܾ  ܾଵ · ܴܨܣ_ܶܦܲ  ܾଶ · ܲܮ_ܥܸܣܣ  ܾଷ ·  ܪܸ_ܥܸܣܣ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ ݀  ݀ଵ · ܦܩܣ  ݀ଶ · ܩܰ  ݀ଷ · ܲܮ_ܥܸܣܣ  ݀ସ ·  ܪܸ_ܥܸܣܣ

 

Table 4.12 shows the results of the analysis for CML_M1_LP model. We can 

see that the model explained about 89% of variance. All coefficients are significant and 

positive.  

CML_M1_LP R2 = 0.89   Highway 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܾ -2.1901 < 0.0001 - - 

PDT_AFR ܾଵ 0.4644 < 0.0001 0.7021 1.3585 

AAVC_LP ܾଶ 4.3136 < 0.0001 0.2636 2.8828 

AAVC_VH ܾଷ 1.4266 < 0.0001 0.1303 3.1651 

Table 4.12 Highway study: Coefficient estimates for CML_M1_LP model. 
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Finally, Table 4.13 shows the results for the CML_M2_LP model. The model 

explained about 93% of variance. All coefficients are statistically significant except 

AAVC_VH (p=0.3468). As indicated in the general analysis procedure at the beginning 

of this section, if a coefficient proves to be non-significant, we remove it from the model 

and perform another regression analysis without it. Therefore, Table 4.13 shows the 

results as obtained without AAVC_VH in the model. However, we kept AAVC_VH in 

the table for completeness in order to emphasize that it was initially used in the model, 

but it did not prove to be significant. This same principle will be applied each time a 

coefficient proves to be non-significant. 

 

CML_M2_LP R2 = 0.93   Highway 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݀ -1.7107 < 0.0001 - - 

AGD ݀ଵ 0.2285 < 0.0001 0.0878 1.5119 

NG ݀ଶ 0.2862 < 0.0001 0.7169 1.7525 

AAVC_LP ݀ଷ 5.3483 < 0.0001 0.3269 1.2569 

AAVC_VH ݀ସ 0.282 0.3468   

Table 4.13 Highway study: Coefficient estimates for CML_M2_LP model. 

  



 

241 
 

Modeling Cumulative Cross-Correlation Results in City Study 
We will follow the same procedure as in the previous section in creating the 

regression models for the city study. 

Cumulative steering wheel angle cross-correlation models: The following models for 

cumulative steering wheel angle cross-correlation results are analyzed here 

(CML_M1_SWA and CML_M2_SWA): 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ܽ  ܽଵ · ܴܨܣ_ܶܦܲ  ܽଶ · ܣܹܵ_ܥܸܣܣ  ܽଷ ·  ܪܸ_ܥܸܣܣ

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ܿ  ܿଵ · ܦܩܣ  ܿଶ · ܩܰ  ܿଷ · ܣܹܵ_ܥܸܣܣ  ܿସ ·  ܪܸ_ܥܸܣܣ

 

Table 4.14 shows the results of the regression analysis for the CML_M1_SWA 

model. The model provided a very good fit, with approximately 91% of variance 

explained. All coefficients are statistically significant except for AAVC_VH (p=0.4865). 

CML_M1_SWA R2 = 0.91   City 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܽ -5.2313 < 0.0001 - - 

PDT_AFR ܽଵ 1.1432 < 0.0001 0.5874 1.208 

AAVC_SWA ܽଶ 7.3513 < 0.0001 0.5485 1.208 

AAVC_VH ܽଷ -0.9344 0.4865   

Table 4.14 City study: Coefficient estimates for CML_M1_SWA model. 

 

Table 4.15 shows the results for CML_M2_SWA model. The model explained 

about 94% of variance and all coefficient estimates are positive and significant. 
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CML_M2_SWA R2 = 0.94   City 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܿ -5.1136 < 0.0001 - - 

AGD ܿଵ 1.3286 < 0.0001 0.1011 1.3062 

NG ܿଶ 0.6791 < 0.0001 0.5815 1.5644 

AAVC_SWA ܿଷ 5.9692 < 0.0001 0.4453 3.8924 

AAVC_VH ܿସ 2.6543 0.0275 0.0593 3.565 

Table 4.15 City study: Coefficient estimates for CML_M2_SWA model. 

 

Cumulative lane position cross-correlation models: The models for cumulative lane 

position cross-correlation results, CML_M1_LP and CML_M2_LP, are as follows: 

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ ܾ  ܾଵ · ܴܨܣ_ܶܦܲ  ܾଶ · ܲܮ_ܥܸܣܣ  ܾଷ ·  ܪܸ_ܥܸܣܣ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ ݀  ݀ଵ · ܦܩܣ  ݀ଶ · ܩܰ  ݀ଷ · ܲܮ_ܥܸܣܣ  ݀ସ ·  ܪܸ_ܥܸܣܣ

 

Table 4.16 shows the results of the regression analysis for the CML_M1_LP 

model. The model explained about 85% of variance. All coefficients are statistically 

significant and positive. 

CML_M1_LP R2 = 0.85   City 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܾ -3.157 < 0.0001 - - 

PDT_AFR ܾଵ 0.3479 < 0.0001 0.6965 1.2092 

AAVC_LP ܾଶ 5.4499 < 0.0001 0.2334 2.1357 

AAVC_VH ܾଷ 2.1844 < 0.0001 0.1901 2.3235 

Table 4.16 City study: Coefficient estimates for CML_M1_LP model. 
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Finally, Table 4.17 shows the regression results for the second model, 

CML_M2_LP. This model provided a better fit by explaining about 90% of variance. As 

before, all estimated coefficients are statistically significant and positive. 

 

CML_M2_LP R2 = 0.90   City 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݀ -3.9457 < 0.0001 - - 

AGD ݀ଵ 0.2072 0.0019 0.0614 1.2898 

NG ݀ଶ 0.215 < 0.0001 0.7173 1.3963 

AAVC_LP ݀ଷ 7.9029 < 0.0001 0.3384 2.3387 

AAVC_VH ݀ସ 1.0684 0.0007 0.093 2.4982 

Table 4.17 City study: Coefficient estimates for CML_M2_LP model. 
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Modeling Per-glance Cross-Correlation Results in Highway Study 
Per-glance steering wheel angle cross-correlation model: This section analyzes 

PG_M_SWA model for per-glance steering wheel angle cross-correlation results: 

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ ݁  ݁ଵ · ܦܩܣ  ݁ଶ · ܣܹܵ_ܥܸܣܣ  ݁ଷ ·  ܪܸ_ܥܸܣܣ

 

Table 4.18 shows the results of the regression analysis for PG_M_SWA 

model. The model explained about 81% of variance. All coefficients are positive and 

highly significant. 

PG_M_SWA R2 = 0.81   Highway 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݁ -3.2091 < 0.0001 - - 

AGD ݁ଵ 2.0241 < 0.0001 0.188 1.0645 

AAVC_SWA ݁ଶ 2.9781 < 0.0001 0.7164 5.4679 

AAVC_VH ݁ଷ 1.7171 0.0071 0.1548 5.6156 

Table 4.18 Highway study: Coefficient estimates for PG_M_SWA model. 

 

Per-glance lane position cross-correlation model: This section analyzes the per-glance 

lane position cross-correlation model (PG_M_LP): 

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ ݂  ଵ݂ · ܦܩܣ  ଶ݂ · ܲܮ_ܥܸܣܣ  ଷ݂ ·  ܪܸ_ܥܸܣܣ

 

Table 4.19 presents the results of the regression analysis for the PG_M_LP 

model. As we can see, the model explained about 67% of variance and all coefficients are 

positive and significant. 
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PG_M_LP R2 = 0.67   Highway 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݂ -1.0856 < 0.0001 - - 

AGD ଵ݂ 0.3481 0.0004 0.1178 1.0432 

AAVC_LP ଶ݂ 3.0039 < 0.0001 0.6613 3.0327 

AAVC_VH ଷ݂ 0.4516 0.0088 0.1484 3.0463 

Table 4.19 Highway study: Coefficient estimates for PG_M_LP model. 
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Modeling Per-glance Cross-Correlation Results in City Study 
Per-glance steering wheel angle cross-correlation model: This section analyzes the 

model for per-glance steering wheel angle cross-correlation results (PG_M_SWA): 

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ ݁  ݁ଵ · ܦܩܣ  ݁ଶ · ܣܹܵ_ܥܸܣܣ  ݁ଷ ·  ܪܸ_ܥܸܣܣ

 

The results of the regression analysis for the PG_M_SWA model are presented 

in Table 4.20. The model explained about 81% of variance, with all coefficients being 

statistically significant and positive. 

PG_M_SWA R2 = 0.81   City 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݁ -1.2638 < 0.0001 - - 

AGD ݁ଵ 1.0872 < 0.0001 0.1403 1.1292 

AAVC_SWA ݁ଶ 3.2654 < 0.0001 0.7805 3.3345 

AAVC_VH ݁ଷ 2.0054 0.0157 0.1127 3.5249 

Table 4.20 City study: Coefficient estimates for PG_M_SWA model. 

 

Per-glance lane position cross-correlation model: The model for per-glance lane position 

cross-correlation results (PG_M_LP) is as follows: 

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ ݂  ଵ݂ · ܦܩܣ  ଶ݂ · ܲܮ_ܥܸܣܣ  ଷ݂ ·  ܪܸ_ܥܸܣܣ

 

Table 4.21 shows the results of the regression analysis for the PG_M_LP 

model. As we can see, the model explained about 69% of variance. All estimated 

coefficients are statistically significant and positive. 



 

247 
 

PG_M_LP R2 = 0.69   City 

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݂ -0.9969 < 0.0001 - - 

AGD ଵ݂ 0.0802 0.0073 0.0903 1.1509 

AAVC_LP ଶ݂ 2.8738 < 0.0001 0.6921 2.3458 

AAVC_VH ଷ݂ 0.28 0.003 0.1372 2.1666 

Table 4.21 City study: Coefficient estimates for PG_M_LP model. 
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Discussion of the Regression Results for Individual Reference Studies 
We started this section with the descriptions of the proposed regression models 

which we applied to both cumulative and per-glance cross-correlation results for two 

reference studies: highway and city driving. Based on the results presented in the 

previous subsections we can draw a general conclusion that our hypothesis H3 is 

supported for three reasons: first, all of the proposed variables proved to be statistically 

significant (except AAVC_VH in case of CML_M1_SWA model in city driving and 

CML_M2_LP model in highway driving), second, all of their corresponding coefficients 

demonstrated positive signs, and third, both steering wheel angle and lane position cross-

correlation results can be described using the same variables. This indicates that the 

cross-correlation results indeed increase as the values of our proposed variables increase. 

This is an important result, because it suggests that interactions with in-vehicle devices 

should be performed in a way which minimizes the effects on these variables. 

There are two models that we proposed for describing the cumulative cross-

correlation results. One uses PDT_AFR (CML_M1_X model), while the second one uses 

AGD + NG (CML_M2_X model) for describing visual attention. Table 4.22 gives an 

overview of the standardized beta coefficients as well as the coefficients of determination 

calculated for the first model. Similarly, Table 4.23 summarizes the same results for the 

second model. The reason we are presenting standardized instead of actual coefficients in 

these tables is that they allow comparing the sizes of the effects of the independent 

variables on the dependent variable. Empty cells indicate that a variable was not used in 

the corresponding model, while “ns” indicates that a coefficient was not statistically 

significant. All other coefficients were statistically significant (with p<0.05) and positive. 
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  standardized beta coefficients  

model road PDT_AFR AAVC_SWA AAVC_LP AAVC_VH R2 

CML_M1_SWA 
highway 0.6644 0.3642  0.1056 0.91

city 0.5874 0.5485  ns 0.91

CML_M1_LP 
highway 0.7021  0.2636 0.1303 0.89

city 0.6965  0.2334 0.1901 0.85

Table 4.22 Standardized beta coefficients for individual reference studies for model 

CML_M1_X. 

standardized beta coefficients  
model road NG AGD AAVC_SWA AAVC_LP AAVC_VH R2 

C
M

L_
M

2_
 

SW
A

 high- 
way 0.6084 0.1472 0.339  0.0822 0.93 

city 0.5815 0.1011 0.4453  0.0593 0.94 

C
M

L_
M

2_
 

LP
 

high-
way 0.7169 0.0878  0.3269 ns 0.93 

city 0.7173 0.0614  0.3384 0.093 0.9 

Table 4.23 Standardized beta coefficients for individual reference studies for model 

CML_M2_X. 

If we compare the coefficients of determination in Tables 4.22 and 4.23 we can 

see that the second model (CML_M2_X) provides a better fit to the data. By just taking 

the average ܴଶ for each table (including both steering wheel angle and lane position), we 

can see that the first model (CML_M1_X) explains about 89% of variance, while the 

second model (CML_M2_X) explains about 92.5% of variance. We have to note here a 

well known fact that adding more variables to the regression model by definition 

increases ܴଶ. However, the difference in the number of variables between the two models 

is only one and from our experience adding an extraneous variable which accounts for a 
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trivial amount of variance increases ܴଶ only slightly. In our case, the observed increase of 

3.5% between the two models can be attributed to the second model providing a better 

explanation of the visual attention (since the variables explaining driving performance 

remained the same between the two models). Namely, using both the average glance 

duration and number of glances provides more information about drivers’ visual attention 

then by just looking at the PDT off-road. Nevertheless, both models explained a 

considerable amount of variance (≥85%), which confirms that the variables selected in 

either case provide a very good explanation of the cumulative cross-correlation results.  

We can also compare how well each model explains individual cumulative 

cross-correlation results for steering wheel angle and lane position. If we look at the 

coefficients of determination, we can see that the cumulative cross-correlation results 

pertaining to the steering wheel angle obtained somewhat better fits for both models. For 

the first model (CML_M1_X) the average ܴଶ for steering wheel angle is 0.91, while for 

lane position is 0.87. Similarly, for the second model (CML_M2_X) the average ܴଶ for 

steering wheel angle is 0.935, while for lane position is 0.915. This can be explained by 

the steering wheel angle being more sensitive to impacts of in-vehicle interactions, 

resulting from its faster dynamics (as we discussed in Chapter 3). Another support for 

this assertion comes from our cross-correlation functions which show much more 

pronounced peaks in case of steering wheel angle compared to lane position.  

Regarding the size of the effect that individual independent variables have on 

cumulative cross-correlation results, we can say that it varies between the two models. 

Judging by the standardized coefficients, in case of the first model (CML_M1_X) 

PDT_AFR has the strongest influence, followed by driving performance described using 
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either AAVC_SWA or AAVC_LP and AAVC_VH. Similar ranking can be obtained in 

case of the second model with visual attention described by NG and AGD having the 

highest influence, followed by AAVC_SWA or AAVC_LP and AAVC_VH. We also 

have to note that AAVC_VH typically has the smallest influence and was also non-

significant in two models: CML_M1_SWA in the city study and CML_M2_LP in the 

highway study. This small influence can be explained by the existing overlap between 

vehicle heading, steering wheel angle and lane position. However, as illustrated in Figure 

4.19, situations exist when vehicle heading can complement steering wheel angle and 

lane position. Since vehicle heading often proved to be significant and no problems with 

multicollinearity have been observed, we decided to keep it in the models. 

Table 4.24 summarizes the regression results for the per-glance model of 

cross-correlation results (PG_M_X).  

  standardized beta coefficients  

model road AGD AAVC_LP AAVC_SWA AAVC_VH R2 

PG_M_SWA 
highway 0.188  0.7164 0.1548 0.81

city 0.1403  0.7805 0.1127 0.81

PG_M_LP 
highway 0.1178 0.6613  0.1484 0.67

city 0.0903 0.6921  0.1372 0.69

Table 4.24 Standardized beta coefficients for individual reference studies for model 

PG_M_X. 

The first thing that we can notice from Table 4.24 is that this model on average 

explains less variation in the per-glance cross-correlation results (average ܴଶ including 

both steering wheel angle and lane position is 0.75) compared to the two models 

explaining the cumulative results (average ܴଶ ≥ 0.89 for both models). This can be 
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explained using our discussion in the introduction (Section 1.1.2), where we state that not 

every glance will necessarily instigate decrements in driving performance. As a result, 

this may create a higher uncertainty (variability) in the per-glance results, which cannot 

entirely be accounted for with the proposed model. Nevertheless, we can see that the 

model still provides a fairly good explanation of the per-glance cross-correlation results, 

since it managed to explain a considerable portion of the variance: ≥ 67% for lane 

position and 81% for steering wheel angle. We can see that the same trend observed with 

the cumulative results occurred here as well, with per-glance steering wheel angle cross-

correlation results providing better fits than the per-glance lane position cross-correlation 

results. 

If we look at the size of the effect that independent variables produce on per-

glance cross-correlation results, we can see that driving performance variables have the 

strongest influence (AAVC_SWA or AAVC_LP). Conversely, the influences of average 

glance duration (AGD) and vehicle heading (AAVC_VH) change in their importance: for 

steering wheel angle AGD is more important, while for lane position AAVC_VH appears 

to be more important. However, overall their importance is similar. 
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4.3.6 Modeling the Effect of the Driving Environment 

As we had a chance to see in Section 4.2 (pg. 200) the effect of the 

environment is present. The goal of this section is to model this effect on the cross-

correlation results. Similar to the previous section, we accomplish this by creating 

regression models which include the type of the environment as another independent 

variable. The data from the two reference studies directly help in achieving this goal. 

As before, two types of cross-correlation results are considered: cumulative 

and per-glance. Regarding cumulative results, two models can be created: one using 

PDT_AFR for describing visual attention and the other which uses AGD and NG. Please 

note that we will keep the same abbreviations for all the variables and models as in the 

previous section. We will also follow exactly the same procedure for conducting 

regression analyses as outlined in Section 4.3.5. 

The first model for cumulative cross-correlation results (CML_M1_X) can be 

defined as follows: 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ܽ  ܽଵ · ܴܨܣ_ܶܦܲ  ܽଶ · ܣܹܵ_ܥܸܣܣ  ܽଷ · ܪܸ_ܥܸܣܣ  ܽସ ·  ܦܣܱܴ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ܾ  ܾଵ · ܴܨܣ_ܶܦܲ  ܾଶ · ܲܮ_ܥܸܣܣ  ܾଷ · ܪܸ_ܥܸܣܣ  ܾସ ·  ܦܣܱܴ

Equation 4.4 Extending the cumulative CML_M1_X model to include driving 

environment. 
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The second cumulative model (CML_M2_X) can be defined as follows: 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ܿ  ܿଵ · ܦܩܣ  ܿଶ · ܩܰ  ܿଷ · ܣܹܵ_ܥܸܣܣ  ܿସ · ܪܸ_ܥܸܣܣ  ܿହ ·  ܦܣܱܴ

 = ܲܮ_ܮܯܥ_ܴܴܱܥܺ

݀  ݀ଵ · ܦܩܣ  ݀ଶ · ܩܰ  ݀ଷ · ܲܮ_ܥܸܣܣ  ݀ସ · ܪܸ_ܥܸܣܣ  ݀ହ ·  ܦܣܱܴ

Equation 4.5 Extending the cumulative CML_M2_X model to include driving 

environment. 

Finally, the regression model for per-glance cross-correlation results (PG_M_X) can be 

defined as follows: 

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ ݁  ݁ଵ · ܦܩܣ  ݁ଶ · ܣܹܵ_ܥܸܣܣ  ݁ଷ · ܪܸ_ܥܸܣܣ  ݁ସ ·  ܦܣܱܴ

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ ݂  ଵ݂ · ܦܩܣ  ଶ݂ · ܲܮ_ܥܸܣܣ  ଷ݂ · ܪܸ_ܥܸܣܣ  ସ݂ ·  ܦܣܱܴ

Equation 4.6 Extending the per-glance PG_M_X model to include driving environment. 

 

In all of the above models “X” represents either steering wheel angle (“SWA”) 

or lane position (“LP”). “ROAD” is a dummy independent variable which accounts for 

the driving environment and has two possible values: “city” and “highway.”  

Regarding visual attention and driving performance variables, we expect to 

obtain significant and positive coefficients. However, regarding the ROAD variable the 

situation is somewhat different. Based on the cross-correlation results obtained in the two 

reference experiments, we had a chance to see an interesting effect: steering wheel angle 

cross-correlation results increased in city driving, while lane position cross-correlation 
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results decreased in city driving. In Section 4.2 (pg. 200) we provided an explanation 

which stated that the participants invested more effort on steering in the city environment, 

which resulted in less variation in the lane position. Conversely, less effort on steering in 

the highway environment resulted in larger variation in lane position. This suggests that 

the expected sign of the corresponding coefficient for the ROAD variable should be 

positive in case of steering wheel angle cross-correlation results (both cumulative and 

per-glance), while in case of lane position cross-correlation results the sign should be 

negative when the environment changes from highway to city. 

Before starting the regression analyses, we had to transform all of our variables 

to improve the symmetries of their distributions. Since all the variables are positively 

skewed, we applied the same type of power transformation as in the previous section: ܺ, 

where ݍ ൏ 1. Table 4.25 shows the variables proposed in our regression models (except 

ROAD) and the power exponents used in transforming those.  

Variable name Abbreviation q (Cumulative, 
CML) q (Per-glance, PG)

PDT Away From Road PDT_AFR 0.4 - 

Glance Duration AGD 0.8 0.5 

Number of Glances NG 0.8 - 

Steering Wheel Angle AAVC_SWA 0.3 0.4 

Lane Position AAVC_LP 0.3 0.3 

Vehicle Heading AAVC_VH 0.3 0.3 

Steering wheel angle 
cross-correlation 

XCORR_(CML or 
PG)_SWA 0.4 0.5 

Lane position cross-
correlation 

XCORR_(CML or 
PG)_LP 0.5 0.4 

Table 4.25 Exponents of power transformations used for normalizing the data for pooled 

reference studies. 
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Figure 4.28 shows the distributions of both original (“O”) and transformed 

(“T”) independent and dependent variables which are used for creating regression models 

for per-glance cross-correlation results. We can see that power transformations improved 

the distributions of all variables. 

AGD AAVC_SWA 

AAVC_LP AAVC_VH 

XCORR_PG_SWA XCORR_PG_LP 

Figure 4.28 Distributions of dependent and independent variables used for modeling per-

glance cross-correlation results for pooled highway and city studies. 
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Figures 4.29 and 4.30 depict the distributions of the independent and 

dependent variables used in modeling cumulative cross-correlation results, respectively. 

PDT_AFR AGD 

NG AAVC_SWA 

AAVC_LP AAVC_VH 

Figure 4.29 Distributions of independent variables used for modeling cumulative cross-

correlation results for pooled highway and city studies. 
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XCORR_CML_SWA XCORR_CML_LP 

Figure 4.30 Distributions of dependent variables used for modeling cumulative cross-

correlation results for pooled highway and city studies. 
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Modeling Cumulative Cross-Correlation Results 
Cumulative steering wheel angle cross-correlation models: This section analyzes the 

following models for cumulative steering wheel angle cross-correlation results 

(CML_M1_SWA and CML_M2_SWA): 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ܽ  ܽଵ · ܴܨܣ_ܶܦܲ  ܽଶ · ܣܹܵ_ܥܸܣܣ  ܽଷ · ܪܸ_ܥܸܣܣ  ܽସ ·  ܦܣܱܴ

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ܿ  ܿଵ · ܦܩܣ  ܿଶ · ܩܰ  ܿଷ · ܣܹܵ_ܥܸܣܣ  ܿସ · ܪܸ_ܥܸܣܣ  ܿହ ·  ܦܣܱܴ

 

Table 4.26 shows the regression results for the CML_M1_SWA model. As we 

can see, the model provided a very good fit, with approximately 91% of variance 

explained. All coefficient estimates are positive and significant, except AAVC_VH 

(p=0.7814).  

CML_M1_SWA R2 = 0.91    

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܽ -7.3214 < 0.0001 - - 

PDT_AFR ܽଵ 1.7829 < 0.0001 0.616 1.21 

AAVC_SWA ܽଶ 8.5816 < 0.0001 0.5053 1.3375 

AAVC_VH ܽଷ -0.2807 0.7814   

ROAD ܽସ 0.168 < 0.0001 0.0574 1.1167 

Table 4.26 Coefficient estimates for CML_M1_SWA model. 
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Table 4.27 shows the regression results for the CML_M2_SWA model. The 

model explained about 94% of variance and all coefficient estimates are positive and 

significant. 

CML_M2_SWA R2 = 0.94    

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܿ -6.4038 < 0.0001 - - 

AGD ܿଵ 1.3584 < 0.0001 0.1147 1.4502 

NG ܿଶ 0.7078 < 0.0001 0.5868 1.745 

AAVC_SWA ܿଷ 7.0377 < 0.0001 0.4144 4.8009 

AAVC_VH ܿସ 2.0612 0.0195 0.0483 4.4421 

ROAD ܿହ 0.1194 0.0002 0.0408 1.2334 

Table 4.27 Coefficient estimates for CML_M2_SWA model. 

 

Cumulative lane position cross-correlation models: Two models for cumulative lane 

position cross-correlation results are analyzed here (CML_M1_LP and CML_M2_LP): 

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ܾ  ܾଵ · ܴܨܣ_ܶܦܲ  ܾଶ · ܲܮ_ܥܸܣܣ  ܾଷ · ܪܸ_ܥܸܣܣ  ܾସ ·  ܦܣܱܴ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ 

݀  ݀ଵ · ܦܩܣ  ݀ଶ · ܩܰ  ݀ଷ · ܲܮ_ܥܸܣܣ  ݀ସ · ܪܸ_ܥܸܣܣ  ݀ହ ·  ܦܣܱܴ

 

Table 4.28 shows the results of the regression analysis for CML_M1_LP 

model. The model explained about 87% of variance. All coefficients regarding visual 
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attention and driving performance are significant and positive. Note that the coefficient 

for ROAD is also significant, but negative. 

CML_M1_LP R2 = 0.87    

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ܾ -2.8908 < 0.0001 - - 

PDT_AFR ܾଵ 0.587 < 0.0001 0.6918 1.299 

AAVC_LP ܾଶ 5.5726 < 0.0001 0.2746 3.0192 

AAVC_VH ܾଷ 2.0337 < 0.0001 0.1627 2.8385 

ROAD ܾସ -0.0356 0.0237 -0.0414 1.7364 

Table 4.28 Coefficient estimates for CML_M1_LP model. 

 

Finally, Table 4.29 shows the regression results for the CML_M2_LP model. 

The model explained about 91% of variance. All coefficients are statistically significant 

and positive, except for ROAD which is negative.  

CML_M2_LP R2 = 0.91    

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݀ -2.7606 < 0.0001 - - 

AGD ݀ଵ 0.3198 < 0.0001 0.0921 1.4221 

NG ݀ଶ 0.2437 < 0.0001 0.6891 1.705 

AAVC_LP ݀ଷ 7.097 < 0.0001 0.3497 3.1587 

AAVC_VH ݀ସ 0.9598 0.0002 0.0768 3.0342 

ROAD ݀ହ -0.0452 0.0006 -0.0527 1.7379 

Table 4.29 Coefficient estimates for CML_M2_LP model. 
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Modeling Per-glance Cross-Correlation Results 
Per-glance steering wheel angle cross-correlation model: We analyze the following 

model (PG_M_SWA) for per-glance steering wheel angle cross-correlation results here: 

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ ݁  ݁ଵ · ܦܩܣ  ݁ଶ · ܣܹܵ_ܥܸܣܣ  ݁ଷ · ܪܸ_ܥܸܣܣ  ݁ସ ·  ܦܣܱܴ

 

The results of the regression analysis for the PG_M_SWA model are outlined 

in Table 4.30. The model explained about 83% of variance. All coefficients are positive 

and significant. 

PG_M_SWA R2 = 0.83    

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݁ -2.3394 < 0.0001 - - 

AGD ݁ଵ 1.2728 < 0.0001 0.1499 1.1091 

AAVC_SWA ݁ଶ 3.9317 < 0.0001 0.7664 4.6811 

AAVC_VH ݁ଷ 1.9499 0.0011 0.1132 4.4056 

ROAD ݁ସ 0.0961 < 0.0001 0.0805 1.2641 

Table 4.30 Coefficient estimates for PG_M_SWA model. 

 

Per-glance lane position cross-correlation model: This section analyzes the following 

model for the per-glance lane position cross-correlation results (PG_M_LP): 

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ ݂  ଵ݂ · ܦܩܣ  ଶ݂ · ܲܮ_ܥܸܣܣ  ଷ݂ · ܪܸ_ܥܸܣܣ  ସ݂ ·  ܦܣܱܴ

 

Table 4.31 presents the results of the regression analysis for the PG_M_LP 

model. The model explained about 72% of variance. The coefficients associated with the 
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driving performance and visual attention variables are positive and significant. The 

coefficient accociated with the ROAD variable can be considered weakly significant at 

the p=0.1 level, so we decided to keep it in the model. We can also see that it has a 

negative sign, as was expected. 

PG_M_LP R2 = 0.72    

Variable name Coefficient Estimate p-value Std. beta VIF 

Intercept ݂ -0.3366 < 0.0001 - - 

AGD ଵ݂ 0.0946 < 0.0001 0.0944 1.0905 

AAVC_LP ଶ݂ 2.3698 < 0.0001 0.7275 3.1114 

AAVC_VH ଷ݂ 0.2092 0.0023 0.103 2.5274 

ROAD ସ݂ -0.0064 0.1043 -0.0455 1.7512 

Table 4.31 Coefficient estimates for PG_M_LP model. 
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Discussion of the Regression Results for Pooled Reference Studies 
We started this section with the goal of modeling the effect of the driving 

environment on cross-correlation results. Table 4.32 (CML_M1_X model) and Table 

4.33 (CML_M2_X model) provide an overview of the significant standardized 

coefficients for all variables used for modeling the cumulative steering wheel angle and 

lane position cross-correlation results. Similarly, Table 4.34 provides the same 

information, but for per-glance cross-correlation results.  

 standardized beta coefficients  

model PDT_AFR AAVC_SWA AAVC_LP AAVC_VH ROAD R2 

CML_M1_SWA 0.616 0.5053  ns 0.0574 0.91

CML_M1_LP 0.6918  0.2746 0.1627 -0.0414 0.87

Table 4.32 Standardized beta coefficients for pooled reference studies for model 

CML_M1_X. 

m
od

el
 standardized beta coefficients  

NG AGD AAVC_SWA AAVC_LP AAVC_VH ROAD 
R2 

CML_ 
M2_ 
SWA 

0.5868 0.1147 0.4144  0.0483 0.0408 0.94

CML_ 
M2_ LP 0.6891 0.0921  0.3497 0.0768 -0.053 0.91

Table 4.33 Standardized beta coefficients for pooled reference studies for model 

CML_M2_X. 

 standardized beta coefficients  

model AGD AAVC_SWA AAVC_LP AAVC_VH ROAD R2 

PG_M_SWA 0.1499 0.7664  0.1132 0.0805 0.83

PG_M_LP 0.0944  0.7275 0.103 -0.0455 0.72

Table 4.34 Standardized beta coefficients for pooled reference studies for model 

PG_M_X. 
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Based on these results, the first important conclusion that we can draw is that 

the same set of proposed independent variables can also be used to describe the pooled 

cross-correlation results as when we analyzed the reference studies individually. The 

second conclusion provides another support for hypothesis H4: driving environment has a 

significant effect on both cumulative and per-glance cross-correlation results. 

Furthermore, we demonstrated that the change of the environment from highway to city 

driving increases steering wheel angle cross-correlation results, which is judged by the 

positive sign of the coefficient to the ROAD variable. Conversely, the same change in 

driving environment decreases lane position cross-correlation results, indicated by the 

negative sign of the coefficient to the ROAD variable. All other coefficients are positive, 

which indicates that the cross-correlation results increase as their corresponding variables 

increase. This conclusion agrees with the results that we obtained by analyzing each 

reference study individually. 

Consistent with the individual regression analyses, we again obtained a 

somewhat better fit for the cumulative cross-correlation results when the second model 

was used: average ܴଶ for both steering wheel angle and lane position is 0.89 for the first 

model and 0.925 for the second model. Similarly, cumulative models provided better fits 

compared to the per-glance model for which the average ܴଶ is 0.775. The same 

explanations that we provided for these effects in the previous section can be applied here 

as well. 
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4.3.7 General Discussion and Future Direction 

This chapter provided us with an important insight into the mechanisms which 

influence the behavior of our cross-correlation results. Namely, in agreement with our 

hypothesis H3, the regression analyses conducted in the previous sections revealed 

significant effects of the proposed variables. Specifically, we proposed two models for 

cumulative and one for per-glance cross-correlation results. The first cumulative model 

included PDT_AFR, AAVC_X (where “X” represents either “SWA” or “LP” based on 

whether the dependent variable is steering wheel angle or lane position cross-correlation 

result) and AAVC_VH variables. The second cumulative model included NG, AGD, 

AAVC_X and AAVC_VH variables. Finally, the per-glance model included AGD, 

AAVC_X and AAVC_VH. These models were applied individually for each reference 

study: highway and city driving. Drawing from the results obtained in the previous 

sections, we can make the following general conclusions: 

1. The estimated coefficients that correspond to the proposed variables proved to be 

positive in all models, thus indicating that the increases in these variables directly 

contribute to the increases in cross-correlation results.  

2. The same set of variables can be used for describing both steering wheel angle 

and lane position cross-correlation results (of course, appropriate driving 

performance variables should be used: a variable based on steering wheel angle 

should be used only with steering wheel angle cross-correlation results, for 

example). This conclusion suggests that the same underlying mechanisms 

influence changes in both types of cross-correlation results. 
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3. The same set of variables proved to be significant in both reference studies. This 

confirms the importance of the proposed variables, since they provided fairly 

good explanations of the cross-correlation results (judged by the coefficients of 

determination) in two unrelated experiments conducted under different 

experimental conditions. 

These conclusions are important because they directly indicate how the in-vehicle 

interactions should be tuned in order to minimize (or at least reduce) the negative impacts 

on driving and cognitive load.  

Proof-of-concept for the Predictive Ability of Cross-Correlation Results 
Our regression models revealed a set of variables which significantly 

contribute to the cross-correlation results. It is important to note that our goal was not to 

obtain a universal model which could be applied in any arbitrary study and under any 

experimental conditions. Rather, our regression analyses were intended to facilitate the 

explanation and as the proof-of-concept for the predictive ability of the cross-correlation 

results. To demonstrate this concept, we applied regression models (cumulative, 

CML_M1_X and per-glance, PG_M_X) obtained in Section 4.3.6 based on our reference 

studies (“Highway Driving and iPod Interactions” and “City Driving and iPod 

Interactions”) to our navigation experiment presented in Chapter 3 (“Exploring 

Augmented Reality Navigation Aids”). We can recall that these models account for the 

effect of the driving environment by providing a separate “ROAD” variable. Since the 

navigation study was performed in the city environment, we set the “ROAD” variable to 

1 (city=1, highway=0) in both models. We have to note here that the city environment 

employed in the navigation study was much more complex due to various confounding 
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variables (such as pedestrians, random ambient traffic and many consecutive turns at 

intersections) than the one used for obtaining these models. Nevertheless, they can still be 

used to demonstrate the general predictive ability. The following model (CML_M1_X) is 

applied for predicting the cumulative steering wheel angle and lane position cross-

correlation results: 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ሺെ7.1534  1.7829 · ܦܲ ܶிோ
.ସ  8.5816 ·  .ଷሻଶ.ହܣܹܵ_ܥܸܣܣ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ሺെ2.9264  0.587 · .ସܴܨܣ_ܶܦܲ  5.5726 · .ଷܲܮ_ܥܸܣܣ  2.0337 ·  .ଷሻଶܪܸ_ܥܸܣܣ

 

The per-glance cross-correlation results are predicted using the following model 

(PG_M_X):  

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ 

ሺെ2.2433  1.2728 · .ହܦܩܣ  3.9317 · ௌௐܥܸܣܣ
.ସ  1.9499 ·  .ଷሻଶܪܸ_ܥܸܣܣ

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ 

ሺെ0.343  0.0946 · .ହܦܩܣ  2.3698 · .ଷܲܮ_ܥܸܣܣ  0.2092 ·  .ଷሻଶ.ହܪܸ_ܥܸܣܣ

 

Please note that in order to make the predictions of the cross-correlation results 

using the above models, we have to account for the normalization transformations 

(ܺᇱ ൌ ܺ) that we introduced to each of our independent and dependent variables (see 

Table 4.25). This explains the exponents that can be seen in the above equations. 
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Table 4.35 shows the observed cumulative cross-correlation results for each 

experimental condition in the navigation study (SV, AR, SPND). We show both the 

magnitudes of the most prominent peaks as well as the areas below the cross-correlation 

functions. We also calculated the ratios of the magnitudes between individual 

experimental conditions. By comparing the common ratios, we can see that they are very 

similar, thus indicating the equivalence of the results obtained using either peaks or areas. 

  Observed 
magnitudes of     

Xcorr Condition prominent
peaks areas Ratios of observed 

prominent peaks 
Ratios of observed 

areas 

C
um

ul
at

iv
e 

 
SW

A
 SV 10.65 83.1667 SV/AR 3.97 SV/AR 3.88 

AR 2.682 21.4291 SV/SPND 1.41 SV/SPND 1.37 

SPND 7.53 60.6336 SPND/AR 2.81 SPND/AR 2.83 

C
um

ul
at

iv
e 

LP
 

SV 0.1211 1.2788 SV/AR 3.45 SV/AR 3.37 

AR 0.0351 0.3791 SV/SPND 1.39 SV/SPND 1.37 

SPND 0.0873 0.9323 SPND/AR 2.48 SPND/AR 2.46 

Table 4.35 Observed cumulative cross-correlation results in the navigation study. 

Table 4.36 shows the results of the cumulative predictions obtained using the 

CML_M1_X model. Even though the predicted values do not match the observed values 

in absolute terms, what is very important to notice is that the ranking of the results is the 

same: SV obtained the highest score, followed by SPND and AR. We also calculated the 

ratios of the predicted results between all conditions. In all cases we obtained somewhat 

smaller results compared to the ratios of the observed values. Nevertheless, the ranking of 

the ratios for the predicted results matches the ranking of the ratios for the observed 

results. 
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Model Condition Predicted areas Ratios of predicted areas 

CML_M1_SWA 

SV 435.5752 SV/AR 1.7056 

AR 255.3766 SV/SPND 1.0915 

SPND 399.047 SPND/AR 1.5626 

CML_M1_LP 

SV 7.6813 SV/AR 1.8267 

AR 4.2051 SV/SPND 1.1043 

SPND 6.9556 SPND/AR 1.6541 

Table 4.36 Predicted cumulative cross-correlation results using CML_M1_X model. 

The fact that our cumulative model obtained the predictions which differ from 

the observed data is not surprising. There are two main reasons for this result: difference 

in the durations of experimental segments between the two studies and a much more 

challenging driving environment that the participants experienced in the navigation study.  

If an experimental segment is long, there may be more opportunity for 

involvement in secondary tasks (of course, it is not guaranteed that the interaction will 

actually occur more often). This may result in larger cumulative cross-correlation results, 

since they provide an overall effect of secondary task engagements. Our model was 

created in the iPod study where the average segment duration was 39.44 seconds, while 

in the navigation study it was 7.36 seconds. Therefore, we decided to “normalize” our 

predicted cumulative results by the ratio of segment durations between the two studies: 

39.44 / 7.36 = 5.36. Table 4.37 gives the comparison of the observed and the 

“normalized” predicted results.  
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Model Condition Observed areas Normalized 
predicted areas

CML_M1_SWA 

SV 83.1667 81.264 

AR 21.4291 47.6449 

SPND 60.6336 74.4491 

CML_M1_LP 

SV 1.2788 1.4331 

AR 0.3791 0.7845 

SPND 0.9323 1.2977 

Table 4.37 Comparison of observed and normalized predicted cumulative cross-

correlation results. 

We can see that the predicted values are now very close to the observed values. 

We can propose two reasonable explanations for the remaining differences. First comes 

from the unaccounted differences in the driving environment between the two studies, 

such as pedestrians and turns at intersections. And second, interactions with the 

navigation devices were visual-only as opposed to manual-visual with the iPod. 

Nevertheless, after the normalization our model provided a fairly good generalization for 

the navigation study. 

Table 4.38 and Table 4.39 show the observed and predicted (using the 

PG_M_X model) per-glance cross-correlation results for the navigation study. If we 

compare the observed and the predicted results we can see that they are very close. This 

indicates that our per-glance model managed to generalize fairly well to an unrelated 

study. We have to recall here that the difference between SV and SPND was not 

significant when comparing per-glance steering wheel angle cross-correlation results. 

Very small differences in magnitudes of their predicted results reflect this finding. 

Furthermore, AR obtained the smallest predicted per-glance result, which agrees with the 
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observed result. Also, no differences have been detected between the three PNDs 

regarding per-glance lane position cross-correlation results, which can also be seen in the 

predicted results by noticing very small differences in the predicted magnitudes.  

  Observed 
magnitudes of     

Xcorr Condition prominent
peaks areas Ratios of observed 

prominent peaks 
Ratios of observed 

areas 

Pe
r-

gl
an

ce
  

SW
A

 SV 7.022 53.2492 SV/AR 1.29 SV/AR 1.26 

AR 5.407 42.3158 SV/SPND 1.06 SV/SPND 1.03 

SPND 6.627 51.9176 SPND/AR 1.23 SPND/AR 1.23 

Pe
r-

gl
an

ce
 

LP
 

SV 0.0749 0.7949 SV/AR 1.01 SV/AR 1.01 

AR 0.0739 0.7893 SV/SPND 0.99 SV/SPND 0.99 

SPND 0.076 0.8059 SPND/AR 1.03 SPND/AR 1.02 

Table 4.38 Observed per-glance cross-correlation results in the navigation study. 

 

Model Condition Predicted areas Ratios of predicted areas 

PG_M_SWA 

SV 53.6173 SV/AR 1.0477 

AR 51.1756 SV/SPND 0.9785 

SPND 54.7952 SPND/AR 1.0707 

PG_M_LP 

SV 0.9019 SV/AR 1.0455 

AR 0.8627 SV/SPND 0.9886 

SPND 0.9123 SPND/AR 1.0575 

Table 4.39 Predicted per-glance cross-correlation results using PG_M_X model. 

One may ask the following question here: why is it the case that the differences 

between the predicted and the observed results were much smaller when the per-glance 

model was used compared to the non-normalized cumulative model? The reason is in the 

fact that the per-glance result describes the effect of an individual instance of interaction. 
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Therefore, the per-glance result is inherently “normalized” and does not depend on the 

length of the experimental epoch and the frequency of involvement in the secondary task. 

Comparing Predictions of Cross-Correlation Results between Reference 
Studies 

We presented two reference studies which analyzed the same secondary task 

(interactions of various difficulties with an iPod) under different driving environments. 

As we had a chance to see in Section 4.2 driving environment produced significant 

effects on all measures. Therefore, it would be interesting to analyze how well our 

models generalize for the two reference studies. Specifically, we would like to predict the 

cross-correlation results from one reference study using a model derived from the other 

reference study. 

In order to simplify the terminology, we will refer to the “Highway Driving 

and iPod Interactions” study as the “highway” study. Similarly, the “City Driving and 

iPod Interactions” study will be referred to as the “city” study. 

For predicting the cumulative cross-correlation results in the highway study we 

used the following models derived from the city study: 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ ሺെ5.2313  1.1432 · .ହܴܨܣ_ܶܦܲ  7.3513 ·  .ସሻଶ.ହܣܹܵ_ܥܸܣܣ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ሺെ3.157  0.3479 · .ହܴܨܣ_ܶܦܲ  5.4499 · .ଶܲܮ_ܥܸܣܣ  2.1844 ·  .ସሻଶܪܸ_ܥܸܣܣ

 

For predicting the per-glance cross-correlation results in the highway study we 

used the following models derived from the city study: 



 

274 
 

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ 

ሺെ1.2638  1.0872 · .ܦܩܣ  3.2654 · .ହܣܹܵ_ܥܸܣܣ  2.0054 ·  .ସሻଶܪܸ_ܥܸܣܣ

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ 

ሺെ0.9969  0.0802 · .ܦܩܣ  2.8738 · .ଶܲܮ_ܥܸܣܣ  0.28 ·  .ସሻଶܪܸ_ܥܸܣܣ

 

For predicting the cumulative cross-correlation results in the city study we 

used the following models derived from the highway study: 

ܣܹܵ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ሺെ4.605  0.8923 · .ସܴܨܣ_ܶܦܲ  4.3857 · .ଶܣܹܵ_ܥܸܣܣ  2.347 ·  .ଶሻଷ.ଷܪܸ_ܥܸܣܣ

ܲܮ_ܮܯܥ_ܴܴܱܥܺ ൌ 

ሺെ2.19  0.4644 · .ସܴܨܣ_ܶܦܲ  4.3136 · .ଷܲܮ_ܥܸܣܣ  1.4266 ·  .ଶሻଶ.ହܪܸ_ܥܸܣܣ

 

Finally, for predicting the per-glance cross-correlation results in the city study 

we used the following models derived from the highway study: 

ܣܹܵ_ܩܲ_ܴܴܱܥܺ ൌ 

ሺെ3.2091  2.0241 · .ଶܦܩܣ  2.9781 · .ଷܣܹܵ_ܥܸܣܣ  1.7171 ·  .ଶሻଶ.ହܪܸ_ܥܸܣܣ

ܲܮ_ܩܲ_ܴܴܱܥܺ ൌ 

ሺെ1.0856  0.3481 · .ଶܦܩܣ  3.0039 · .ଷܲܮ_ܥܸܣܣ  0.4516 ·  .ଶሻଵ.ܪܸ_ܥܸܣܣ
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Table 4.40 presents the observed and predicted cumulative and per-glance 

cross-correlation results for both reference studies using the above models.  

Xcorr 
C

on
di

tio
n 

Observed areas 
for highway 

study 

Predicted areas 
for highway 
study using 

models derived 
from city study 

Observed areas 
for city study 

Predicted areas 
for city study 
using models 
derived from 

highway study 

C
um

ul
at

iv
e 

SW
A

 B 189.02 207.06 331.38 258.99 

E 27.99 26.41 58.37 48.93 

D 108.87 113.31 154.32 110.05 

C
um

ul
at

iv
e 

LP
 

B 8.36 7.12 6.54 7.14 

E 1.66 1.68 1.64 1.8 

D 4.54 4.12 3.57 3.39 

Pe
r-

gl
an

ce
 

SW
A

 B 16.5 17.35 25.4 21.79 

E 7.59 8.47 11.89 11.14 

D 13.43 14.6 17.63 15.06 

Pe
r-

gl
an

ce
 

LP
 

B 0.76 0.67 0.52 0.55 

E 0.47 0.46 0.34 0.39 

D 0.57 0.55 0.43 0.44 

Table 4.40 Observed and predicted cross-correlation results for both reference studies. 

Predicted results for each study were obtained using models from the opposite study. 

Two conclusions can be derived based on the above results. First, models 

derived from both studies provided very good generalizations judging by the small 

differences between the predicted and the observed values. And second, the ranking of 

the experimental conditions (B, E, D) based on the predicted values always matches the 

ranking based on the observed values. High accuracy of the predicted results can be 

explained by the fact that both studies analyzed the same type of interaction. We 
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demonstrated in Section 4.2 that by changing the driving environment the distributions of 

the common variables (driving and visual attention measures) changed, however, our 

models managed to generalize very well outside of the scope of the data for which they 

were generated. This provides another source of evidence for the predictive ability of the 

cross-correlation results. 

Future Direction 
The results presented in this chapter strongly suggest that the outcomes of our 

cross-correlation method can be predicted using the proposed variables and are the first 

step towards obtaining a more general model. We believe that this goal can be achieved 

in the future studies by extending our “reference experiments” approach to include more 

driving and in-vehicle interaction conditions. Specifically, different road types (such as 

curvy and residential), time of day (such as daylight and night), weather conditions (such 

as rain, snow and fog) and the combinations of these should be investigated. This would 

provide additional data, which would allow fine tuning the models. Additionally, it may 

be of interest to also model the driving environment from the standpoint of events of 

interest, such as whether a pedestrian was crossing the street in front of the participant in 

each experimental segment, how many ambient vehicles were present in each segment, 

and so on. This information may provide additional insight into the environmental effect. 

One reason why our current models may not be used directly in any arbitrary 

experiment is the fact that not all in-vehicle interactions are described well using visual 

attention. For example, conversing on a hands-free cell phone would require some other 

variable besides visual attention which has the potential of introducing changes in driving 

performance, such as the instants when the driver utters the first word. Similarly, gestures 
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[134] are becoming increasingly popular in the automotive environment. Visual attention 

would likely not work well in this case either, since gestures can be performed without 

directing visual attention away from the road. Therefore, more studies are necessary in 

order to obtain a complete understanding of how the cross-correlation results change 

under different driving environments and in-vehicle interactions.  

Nevertheless, the fact that we obtained a set of variables which describe well 

the changes in the cross-correlation results coming from the particular manual-visual type 

of interaction with an iPod can help with design decisions. Specifically, we can argue that 

by minimizing those variables we can reduce the cross-correlation results. By making 

comparisons with subjective (NASA-TLX) and physiological (average skin conductance) 

estimates of cognitive load we demonstrated in the current and the previous chapter that 

the cumulative cross-correlation results are strongly related to cognitive load. Based on 

these results we can argue that the above minimizations would eventually contribute to 

decreases in cognitive load. The question is which of these variables can be practically 

minimized? 

We had a chance to see that driving performance can partially be impacted by 

the driving environment. Demanding driving conditions produce higher cognitive load. 

However, the choice of the environment is often beyond a driver’s decision. Therefore, 

the most obvious choice would be to reduce the amount of secondary task engagement. In 

case of manual-visual interactions this means reducing the amount of visual attention 

directed off-road, in other words, reducing PDT away from the road. As we had a chance 

to see, this can be accomplished either by reducing the total number of glances (NG) or 

the duration of individual glances (AGD). Reducing both variables simultaneously would 
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be the best option, because it is important to avoid cases where the drivers would 

decrease one variable and increase the other, which would essentially make the overall 

visual attention the same. This effect was actually observed in our reference experiments 

(see Section 4.2), where the participants directed a larger number of shorter glances off-

road in the city driving and a smaller number of longer glances in the highway driving. 

This may lead to the usability paradox discussed in the background (Chapter 2): the 

drivers may feel that short individual interactions are safe and thus start performing more 

interactions.  

Another way of reducing the cross-correlation results would be to minimize the 

changes in driving performance variables. Even though those changes are influenced both 

by the environment and the secondary task engagements, the technological advancements 

may allow us to decouple those influences. For example, advanced driver assistance 

systems in the forms of lane departure/keeping [135] and adaptive cruise control [136] 

are just some examples of the variety of products that are penetrating the automotive 

market. It may be possible in the near future to temporary turn the control of the vehicle 

to an intelligent controller which would keep the vehicle steady in the center of the lane 

while the driver is attending to the secondary task. How well such a system may work 

can directly be tested using our cross-correlation method. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

As the new technological advancements are becoming available, an increasing 

number of in-vehicle services are being introduced in vehicles every day. Most of these 

services are meant to improve drivers’ overall driving experience by enabling access to 

social networks, traffic reports and infotainment systems, to name just a few. There is 

plenty of evidence that drivers are finding value in using those services. Therefore, we 

can conclude that in-vehicle distractions are here to stay. Often equipment manufacturers 

try to reduce the negative effects of interactions with in-vehicle devices on driving by 

resorting to creative applications of various interaction modalities, such as spoken. 

Nevertheless, statistics indicate that driver distraction-induced crashes are on the rise [5]. 

This suggests that reliable tools are necessary for detecting the potential for distraction 

which would allow informing design decisions even before a device is introduced in 

vehicles. 

The method presented in this dissertation offers one possible solution which 

can help in detecting and measuring distraction introduced by in-vehicle (secondary) 

tasks. Specifically, we set out to develop a new performance measure which provides 

more sensitivity to changes in cognitive load compared to standard average-based 
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measures. As was discussed in the introduction, it is often the case that changes in 

cognitive load are not obvious using the average-based driving performance measures, 

such as variances of lane position and steering wheel angle. This occurs despite the fact 

that changes may exist in visual attention and/or subjective estimates of cognitive load. 

As a result, this may create a wrong impression about the influence on driving and 

cognitive load of the analyzed in-vehicle interactions. Additionally, as Wickens suggests 

[10], it is necessary to obtain multiple sources of evidence pointing to the same 

conclusion in order to be able to avoid circular arguments. 

The main problem with the average-based measures is that they are unable to 

use the information about the potential sources of the observed changes in driving 

performance. This may result in missing localized changes due to various factors: 

durations of the analyzed intervals, influences occurring infrequently or non-interaction 

related changes masking the relevant ones. However, just because the influence of an in-

vehicle interaction is not detected in the averages, it does not mean that it is not present 

and that it should be neglected. It cannot be emphasized enough how important those 

localized changes can be especially with interactions that can be performed very often 

(such as interactions with an MP3 player). Those individual interactions may appear 

simple to the drivers and even encourage the engagement. However, as Lee and Strayer 

[45] suggest, this behavior may lead to a usability paradox, where each individual 

interaction appears simple, but more frequent engagement increases the overall risk. 

To circumvent this problem, we proposed a novel method which is based on 

the mathematical function of cross-correlation. This method is initiator-based, which 

means that it accounts for the potential causes of changes in driving performance. This 
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way we are able to isolate the events of interest and analyze their impacts on driving and 

cognitive load. This is in contrast to the average-based measures, which pool all the data 

together thus running the risk of missing events of interest in the averages. The next 

section will provide an overview of the contributions provided by this dissertation. 

5.1 Primary Contributions 

There are three goals that we stated at the beginning of this research: 

(G1) Introduce a cumulative measure of a secondary task engagement on cognitive 

load, 

(G2) Introduce an instance-based measure of a secondary task engagement on 

cognitive load, 

(G3) Provide explanations for the mechanisms underlying the cumulative and 

instance-based measures. 

Our goals have been stated with generalization being our ultimate aim. 

Therefore, we defined our proposed method such that it can be applied to various types of 

in-vehicle interactions, such as haptic, spoken, visual, and so on. However, as a first step 

towards developing a truly generalized method, we constrained this research to two 

interaction modalities which are the most commonly found in the automotive 

environment: visual-only and manual-visual. The following sections explain how each 

goal was addressed, while Section 5.3 discusses the ways of extending this research. 

Additionally, Section 5.4 proposes potential applications of our method, some of which 

can be used in non-automotive research areas as well. 
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5.1.1 Addressing Goal 1 

Our first goal was to introduce a cumulative measure of a secondary task 

engagement on cognitive load. We hypothesized (H1) that this goal can be addressed 

through an initiator-based quantification of cumulative secondary task engagement. What 

this means is that our method uses a sequence of reference points (“initiator sequence”)  

which indicates the occurrence of secondary task engagements along with an appropriate 

performance measure (“performance sequence”) which can detect the effects of those 

engagements. The cumulative effects of those secondary tasks on performance (which is 

a measure of cognitive load) are then evaluated by applying the mathematical function of 

cross-correlation between the two sequences.  

When analyzing visual and manual-visual interactions with in-vehicle devices, 

one proven effect that has a negative influence on driving is gazing away from the 

forward road. Therefore, in this case glances directed away from the road make an 

appropriate initiator sequence, while changes (absolute value of change (AVC) in our 

case) in steering wheel angle or lane position can be used as performance sequences. The 

main idea behind this is that while the driver is not looking at the road she is not aware of 

the situation in front of the vehicle; thus, a correction in the vehicle position may have to 

be applied once the gaze is returned to the road. This of course does not imply that every 

glance directed off-road necessarily results in decrements in driving performance. 

However, those decrements are more likely when the visual attention is not directed to 

the road. Since the cross-correlation function takes time into consideration even the 

localized influences, which may get unnoticed in the averages, are detected. 
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Based on the results of three driving simulator studies (“Exploring Augmented 

Reality Navigation Aids” which was published at MobileHCI 2011 conference [36], 

“Highway Driving and iPod Interactions” and “City Driving and iPod Interactions”) 

presented in Chapters 3 and 4 we can conclude that H1 is supported. The overall effects 

of looking away from the road were revealed through prominent, statistically significant 

cross-correlation peaks for both driving performance sequences (AVC of steering wheel 

angle and lane position) and on average appeared about 0.6 seconds after the gaze 

returned to the road. These results clearly indicate that the effects of interactions with the 

tested in-vehicle devices (in our case personal navigation devices and iPod) are followed 

by pronounced changes in driving performance. Furthermore, by applying the two 

methods proposed in hypothesis HRP (magnitudes of most prominent peaks and areas 

below the curves) we revealed statistically significant differences in cross-correlation 

results between different experimental conditions. This provided support for hypothesis 

HRP, allowed ranking of the experimental conditions and also demonstrated high 

sensitivity that our method provides, given that the differences were not always detected 

using the average-based measures. For example, in the navigation study (“Exploring 

Augmented Reality Navigation Aids”) none of the average-based driving performance 

measures detected a significant effect of the navigation type. Similarly, in the iPod study 

which involved city driving (“City Driving and iPod Interactions”) no effect has been 

detected on the variance of lane position. 

If we take into account the nature of the driving performance measures that we 

are using in our method (AVC of steering wheel angle and lane position), the cumulative 

cross-correlation result represents the amount of cumulative angular (for steering wheel 
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angle) and positional (for lane position) change introduced over the course of interaction 

with the secondary task. In other words, the cumulative result describes the overall effect 

of the secondary task engagement, which is exactly what we intended to accomplish in 

our first goal. In that respect our cumulative results are similar in nature to the “standard” 

measures which are known to be able to reflect changes in cognitive load, specifically, 

subjective, physiological and average-based measures. Therefore, it is beneficial to 

compare the ranking obtained using our method with the rankings obtained from these 

standard measures. If the rankings are the same, it confirms that both types of measures 

provide conclusions in the same direction, which provides support for the construct 

validity of our method.  

We analyzed how cumulative cross-correlation results compare to subjective 

estimates of cognitive load using linear regressions. In all studies we obtained strong 

relationships (ܴଶ  0.88), which indicate that both cumulative cross-correlation and 

NASA-TLX results point to the same conclusion regarding cognitive load changes. Table 

5.1 gives an overview of the coefficients of determination in each study for both 

cumulative steering wheel angle (ܴ௦௪) and lane position (ܴ) cross-correlation results. 

Study ࡾ for NASA-TLX vs. ࢙࢝ࡾ ࡾ . for NASA-TLX vsࡾ
Exploring Augmented 

Reality Navigation Aids 0.9749 0.9752 

Highway Driving and iPod 
Interactions 0.9821 0.9608 

City Driving and iPod 
Interactions 0.8818 0.9325 

Table 5.1 Coefficients of determination obtained between NASA-TLX and cumulative 

cross-correlation results for three studies. 
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As we discussed in Chapter 2, other estimates of cognitive load exist, such as 

physiological measures. It is for that reason that we decided to compare our cumulative 

results to average values of heart rate and skin conductance. Both of these physiological 

measures were collected in the study which analyzed iPod interactions in city driving. 

Average skin conductance provided more sensitivity to changes in interaction type 

compared to heart rate. Therefore, we conducted a linear regression analysis between our 

cumulative cross-correlation results and average skin conductance. As we can see in 

Table 5.2, we again obtained very strong relationships (ܴଶ  0.81). 

Study ࡾ for average skin 
conductance vs. ࢙࢝ࡾ

  for average skinࡾ
conductance vs. ࡾ 

City Driving and 
iPod Interactions 0.8108 0.8747 

Table 5.2 Coefficients of determination obtained between average skin conductance and 

cumulative cross-correlation results. 

Finally, we can also compare our cumulative cross-correlation results to 

average-based measures of driving performance. If we recall from Section 4.2.4, among 

all average-based measures, variance of steering wheel angle provided the highest 

sensitivity towards changes in interaction type with the iPod (B, E, D) in both reference 

studies. It detected differences between all interaction types and the obtained ranking 

matched the one obtained using our cumulative cross-correlation results. This provides 

another source of support that construct validity is supported.  

It is also worth mentioning that the variance of lane position was not very 

sensitive and detected only one difference in the highway driving study (between E and D 

conditions) and did not even detect the main effect of the interaction type in the city 
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driving study. Conversely, our cumulative lane position cross-correlation results detected 

significant differences between all interaction conditions in both reference studies.  

Based on all of the above results we can conclude that goal G1 is 

accomplished. We had a chance to see that our method does provide a cumulative effect 

of secondary task engagements (H1), allows ranking of the experimental conditions based 

on these results (HRP), has the potential to provide higher sensitivity compared to 

average-based measures, and also satisfies construct validity. 

5.1.2 Addressing Goal 2 

Our second goal (G2) was to introduce an instance-based measure of a 

secondary task engagement on cognitive load. We hypothesized (H2) that this goal can be 

addressed through initiator-based quantification of instances of secondary task 

engagement. In this case the same assumptions and data sequences were used as in H1. 

However, a normalization procedure was introduced in order to estimate the effects of 

individual instances of engagement. As already discussed, in our case instances of 

engagement included glances directed away from the forward road. Therefore, by 

addressing the second goal we obtained the average effects on driving and cognitive load 

introduced by individual glances. 

We tested this hypothesis using the same driving simulator studies employed 

for testing H1 (Chapters 3 and 4). The effects of individual glances directed away from 

the road were revealed through prominent, statistically significant cross-correlation 

peaks. Similar to the cumulative results, the peaks on average appeared about 0.6 seconds 

after the gaze returned to the road. These results indicate that deteriorations in driving 
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performance exist even at the level of individual instances of engagement in the 

secondary task. This is a very important finding, because it agrees with our discussion 

that even those individual, local influences should not be neglected, since they have the 

potential to impact driving and cognitive load. Based on these results we can conclude 

that H2 is supported.  

Using the two methods proposed in hypothesis HRP (magnitudes of most 

prominent peaks and areas below the curves) we also demonstrated that instance-based 

results allow ranking. For example, in the navigation study, the instance-based (per-

glance) steering wheel angle cross-correlation results revealed that SV and SPND 

produced similar effects when looked at from the standpoint of individual instances of 

engagement. However, AR PND produced a significantly smaller effect compared to 

both SV and SPND. Similarly, in case of iPod interaction (reference) studies we revealed 

large differences between all three interaction types (B, E, D) at the level of individual 

instances of engagement. These differences at the elementary levels of interaction are 

very important, because they allow us to learn something about the nature of the 

influence of individual glances that eventually give rise to the observed cumulative 

effects. Such low-level insight into different interaction types is impossible to obtain 

using the average-based measures, since they consider the experiment as a whole. 

The above results demonstrate that we successfully quantified the effects of 

individual instances of engagement in the secondary tasks (H2) and also managed to rank 

those effects (HRP) for different interaction types. This indicates that G2 is accomplished.  
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5.1.3 Addressing Goal 3 

Finally, our last goal was to propose explanations for the mechanisms 

underlying the cumulative and instance-based measures. This goal was addressed by our 

third hypothesis (H3) which proposed that the following variables may have an important 

influence on our cross-correlation results: percent dwell time spent looking away from 

the road (PDT_AFR), average glance duration (AGD), number of glances (GN) and the 

average absolute amount of change in lane position (AAVC_LP), steering wheel angle 

(AAVC_SWA) and vehicle heading (AAVC_VH). Since our cross-correlation results 

represent a unique combination of both driving performance and visual attention, we 

selected the above variables in an attempt to provide the best descriptions of the both 

worlds. In order to analyze the effects of these variables we conducted a series of detailed 

multivariate regression analyses presented in Chapter 4. Given that cumulative and 

instance-based measures address different aspects of secondary task engagement, we 

created a separate model for each measure. The cumulative model included PDT_AFR 

(or alternatively AGD + GN), AAVC_X (where “X” represents either steering wheel 

angle (SWA) or lane position (LP)) and AAVC_VH. The instance-based model included 

AGD, AAVC_X and AAVC_VH.  

We tested these proposed models using the data obtained from the two iPod 

interaction studies (“Highway Driving and iPod Interactions” and “City Driving and iPod 

Interactions”). These studies were designed using a “reference studies” approach, which 

means that they were fairly well controlled in order to minimize confounding variables. 

They included the same secondary task (three levels of interactions with an iPod) and the 
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only major difference consisted in the employed driving environment: highway in the one 

case and city in the other. 

The results indicated statistically significant effects of all of the above 

variables on cross-correlation results. Specifically, all variables contributed with positive 

signs, thus indicating that the cross-correlation results increase as the values of these 

variables increase. The models provided very good fits to the data, with coefficients of 

determination ranging from 0.85 to 0.94 for cumulative models and from 0.69 to 0.81 for 

instance-based models. These are important results, because they indicate that these 

variables should be taken into consideration when designing in-vehicle devices. 

Specifically, the designers should strive to reduce these variables in order to reduce the 

impacts on driving and cognitive load. Based on these results we can conclude that G3 is 

accomplished as well. 

We have to note here that our main intention in addressing G3 was to propose 

the underlying mechanisms which influence our cross-correlation results and not to create 

a comprehensive model which would address every possible in-vehicle interaction. 

However, we wanted to observe how the model obtained using our reference studies 

would predict the results obtained in an unrelated study, specifically, the navigation study 

presented in Chapter 3 (“Exploring Augmented Reality Navigation Aids”).  

As we had a chance to see in Section 4.3.7, even though the predicted ranking 

of the experimental conditions was correct, our model predicted much higher values for 

the cumulative results compared to the observed results. We asserted that this was caused 

by the fact that our model was estimated for the reference studies which had much longer 

segment durations compared to the navigation study. After applying the normalization 
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factor (equal to the ratio of segment durations between the navigation and the reference 

studies) our predicted cumulative results matched the observed cumulative results very 

closely.  

Regarding the instance-based results our model provided predictions which 

were fairly close to the observed results. The reason why no normalization was necessary 

in this case is the fact that our instance-based measure describes the effects at the level of 

individual instances of interaction.  

Furthermore, we also compared how the individual models derived from the 

two reference studies would predict each other’s results. In other words, we used a model 

derived from one study and used it to predict the results of the other study. As we saw in 

Section 4.3.7 (Table 4.40) both models provided predictions of the cumulative and 

instance-based results which very closely resembled the observed results.  

The above results indicate that our models provide fairly good generalizations 

when applied to data from unrelated studies. This is important, since it indicates that the 

outcomes of our method are indeed predictable. Nevertheless, further studies are 

necessary to fine tune the models for more diverse driving and in-vehicle interaction 

conditions (Section 5.3 proposes more ideas in this direction). In any case, we can 

conclude that our results successfully demonstrated a proof-of-concept for the predictive 

ability and are the first step toward obtaining a more general model. 
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5.2 Secondary Contributions 

Besides the main contributions outlined in the previous section, there are 

multiple secondary contributions that have been obtained in the studies presented in this 

dissertation that are worth mentioning: 

1. At the end of Chapter 3 we hypothesized (H4) that driving environment may have 

a significant effect on driving and cognitive load. Our “reference study” approach 

allowed us to confirm H4 by observing a significant effect of the driving 

environment on all collected measures: visual attention, average-based and cross-

correlation results. This suggests that the driving environment is an important 

factor and should be taken into account as well when analyzing in-vehicle 

interactions.  

2. Our navigation study (“Exploring Augmented Reality Navigation Aids”, Chapter 

3), published at MobileHCI 2011 conference [36], explored two novel PNDs: 

augmented reality and street view. Our results indicated that augmented reality 

provided for better visual attention, driving performance, and subjective preference 

compared to street view and standard map-based PNDs. Based on these results we 

can say that AR PND stands out as a safe and agreeable PND. Nevertheless, our 

participants brought to our attention two concerns that merit further study. First, 

our implementation of an AR PND did not provide global navigation information; 

it only informs drivers about the current route to follow. Three (of 18) participants 

in fact indicated they would have appreciated receiving information about 

upcoming turns. One approach to address this issue is that proposed by Kim and 

Dey [28]. Second, overlaying routes for long stretches of road may be distracting. 
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Two participants stated that they disliked the semi-transparent navigation route in 

the AR PND because it was always present in their peripheral vision. Showing AR 

directions only when a turn is coming may alleviate this problem. 

3. Even though iPod interactions have been analyzed in the research literature 

[18;26], our reference studies provide new insight into those interactions. It is 

often the case that complex interactions require more steps in order to obtain a 

desired result. In that respect it is expected that complex interactions would 

produce larger negative overall effects on driving and cognitive load. However, 

according to our instance-based measure we now know that even the effects of 

individual instances of interaction differ based on the difficulty of the performed 

task. Namely, glances directed off-road are “elementary” units of interaction 

which are common for each interaction type. However, our results indicate that 

even at the level of individual glances the effects of different interaction types are 

not the same. This result is very important and cannot be obtained using average-

based measures. 

5.3 Extensions of the Current Work 

This section presents ideas about further extensions of our proposed method.  

The way our method is defined (initiator-based approach) lends itself well to 

extensions to other types of in-vehicle interactions. We discussed that this research was 

constrained to interactions which depend on visual and manual-visual modalities. In this 

case the proper initiator sequence is visual attention. However, for other modalities, such 

as spoken, this may not be the case. Conversing on a hands-free cell phone is one obvious 
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example which does not depend on visual attention. In such a case one possible initiator 

sequence may contain reference points whenever the driver first starts talking. Of course, 

other alternatives are possible as well depending on the event of interest that should be 

analyzed. In a similar fashion we can envision analyzing other interaction types, such as 

tactile where a driver can press buttons or produce gestures on touch-sensitive surfaces 

without removing eyes from the road. 

Since we analyzed visual and manual-visual interactions, we used glances 

directed off-road for generating the initiator sequence. It may be interesting to explore 

whether the results would change if instead of glances we would use fixations. This is a 

reasonable question to ask, since fixations are limited in both temporal and spatial 

domain, while glances are concerned with general observations of the objects of interest.  

In our approach we transformed steering wheel angle and lane position using 

the absolute value of change function in order to describe changes in driving 

performance. In doing so we did not distinguish between moving to the left or right: we 

assumed equal cost of colliding with parked or vehicles from the opposite direction. 

However, it may be possible to decouple the two sides and apply different weights 

depending on the direction of the turn. The assumption behind this is that the drivers may 

apply a different amount of correction based on the direction of the turn. 

One aspect of our results that should be investigated further is the behavior of 

the lag of the most prominent peaks. As we hypothesized in Section 3.2.3, the lag of the 

most prominent peak may be related to the urgency of the situation in front of the vehicle 

and the reaction time. However, this assertion should be investigated in more 

experimental studies. It is possible that the introduction of more diverse experimental 



 

294 
 

conditions will provide more variability in lags, which may help in casting more light on 

this issue. In our scenarios the participants were not rushed to perform the correction. 

Also, whenever they engaged in secondary tasks they always had the road in their 

peripheral vision, which likely helped with keeping the vehicle on the road. However, it 

would be interesting to analyze whether the lag would change under more urgent 

conditions. For instance, a more urgent situation would be created if a driver would be 

forced to look way down on the central console in order to perform a task. This would 

completely eliminate the road from the periphery, thus potentially requiring a faster 

reaction when the gaze is returned back to the road. This situation is not very difficult to 

imagine, since HDDs are sometimes mounted fairly low or drivers may sometimes place 

their PNDs next to the gear shifter. Another way to test the effect of urgency would be to 

use the visual occlusion paradigm [137], where the picture of the road is switched off for 

predefined periods of time. The moments when the picture of the road appears can then 

be used as the initiator sequence for the cross-correlation analysis. By changing the 

duration of the occlusion and the type of the road (for example curvy) we may be able to 

change the urgency and see how it influences the lags and the peaks as well. 

We demonstrated that our cross-correlation results closely follow the 

subjective estimates of cognitive load obtained through NASA-TLX questionnaires. 

Furthermore, we demonstrated a strong relationship with one physiological estimate, 

specifically, average skin conductance. As part of applying our method to other types of 

in-vehicle interactions and driving environments, it would be of interest to further 

analyze the relationship between our results and the above estimates of cognitive load in 

order to determine the exact shape of the relationship (i.e. linear or non-linear). 
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Finally, it may be worth exploring the applicability of our method to 

physiological measures. Namely, since our method has been defined in a way that it can 

be applied between any two sequences, it would be possible to cross-correlate changes in 

physiological measures with a desired initiator sequence. The advantage of this approach, 

compared to standard average-based measures, would be in revealing how the physiology 

changes over time and where the largest change is focused (peak and lag observed with 

the cross-correlation functions). Given that the physiological measures are also 

commonly analyzed using the average-based measures, the possibility of missing 

localized changes exists here as well. 

5.4 Applicability of the Current Work 

Given its generalized definition, there are many potential areas which may 

benefit from using our method. Some of those are outlined in this section. 

Exploring Cognitive Load in Human Dialogues 
In-vehicle spoken dialogue systems are gaining in popularity. However, it is 

not always clear which system behaviors might result in increased driver cognitive load, 

which in turn could have negative safety consequences. We conducted a preliminary 

study [138] to explore the use of pupil diameter coupled with our cross-correlation 

method in the evaluation of the effects of different dialogue behaviors on the cognitive 

load of the driver.  

It has been shown in the literature that pupil diameter can be sensitive to 

changes in cognitive load [139]. Given pupil diameter’s fast dynamics we expected that it 

would be sensitive to rapidly changing behaviors occurring during a dialog. For this 
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study, we used a less-structured task, which we felt is more representative of future HMI 

interaction than highly structured tasks (e.g. question-answer tasks).  Specifically, we 

examined whether we can detect differences in cognitive load between times when the 

driver is engaged in a verbal game with a remote conversant, and after the game finishes. 

Our hypothesis was that, once a game finishes, drivers would experience reduced 

cognitive load, and that this would be reflected in decreased pupil diameter. 

Pairs of participants (the driver and the other conversant) were engaged in a 

spoken dialog. The driver operated the driving simulator, while the other conversant was 

seated in another room. The participants communicated over the headphones. A total of 

six pairs participated in the experiment.  

The spoken task was the game of “Taboo,” a game in which the other 

conversant is given a word, and needs to work with the driver to identify it, but cannot 

say that word or five related words. Participants played a series of Taboo games. We 

provided the words to the other conversant by displaying them on an LCD monitor. We 

imposed a time limit of 1 minute on each game. The experimenter signaled the end of 

each Taboo game with an audible beep (0.5 second long, high pitched sine wave) heard 

by both conversants. The end of a game was reached in one of three ways: when the 

driver correctly guessed the word, when the other conversant used a taboo word, or when 

the conversants ran out of time. 

Figure 5.1 demonstrates the experimental setup. Even though the equipment 

allowed the participants to see each other, this condition was not analyzed in this 

preliminary study. Rather, we focused on voice-only interactions. 
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Figure 5.1 Driver (left) and other conversant (right). 

Using the time instants when the beeps started, we segmented each experiment 

into individual games. We performed calculations and analyzed changes in cognitive load 

based on the pupil diameter data for each individual game. We estimated the cross-

correlation function between the beep sequence (BS) and the pupil diameter sequence 

(PDS). BS is a sequence of 0s and 1s, where a ‘1’represents the moment when the beep 

started, signaling the end of a Taboo game. The PDS represents the processed 

measurements of the driver’s left eye pupil diameter. We processed the raw 

measurements by interpolating short regions where the eye-tracker did not report pupil 

diameter measures, as well as by custom nonlinear smoothing (e.g. to reduce erroneous 

dips in pupil diameter caused by blinks). 

The left graph in Figure 5.2 shows the average cross-correlation function for 

all subjects between the BS and the PDS. As hypothesized, the cross-correlation function 

drops in the seconds after the beep is initiated (which is at lag = 0 in the figure). The fact 

that the cross-correlation drops for about 5 seconds is consistent with the fact that the first 

contribution by the other conversant started on average about 4.6 seconds after the 

beginning of the beep (at lag = 0). The cross-correlation functions of two of the six 

drivers in this study did not clearly support our hypothesis. A number of factors could be 
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responsible, including differences in how the game was played by these participants (e.g. 

how engaged they were), and the noisiness of the pupil diameter measurements. 

Figure 5.2 Cross-correlation functions for all six drivers (left) and for the four drivers 

whose results clearly supported our hypothesis (right). 

Figure 5.2 (right) shows the average cross-correlation function for the four 

drivers whose data did in fact support our hypothesis. In comparison to the right graph, 

we can see that the drop is even more prominent. Additionally, the pupil diameter appears 

to be rising in the seconds before the end-of-game beep. We hypothesize that this rise is 

related to increased cognitive activity by the driver as she is attempting to find the word 

described by the other conversant. As correctly identifying this word is the most common 

cause of the end of the game, and thus the beep, it appears likely that cognitive load 

would indeed peak before the beep, thus at a negative value of lag. We should also expect 

to see a peak each time the driver makes a guess, but those peaks are not aligned with 

each other in time. Thus, they would not be visible after the cross-correlation operation. 

The results of this preliminary study support our hypothesis that pupil diameter 

can be used to identify major changes in cognitive load during a dialogue. Furthermore, 
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this study demonstrates the applicability of our cross-correlation method to measures 

outside of the automotive domain. 

Analyzing In-Vehicle Warnings 
Various advanced driver assistance systems (ADAS) are either already present 

or are being introduced in vehicles nowadays [140], such as lane departure, blind spot 

and driver alert warning systems. These systems typically produce either an audible or a 

visual warning signal which indicates an imminent danger. It would be interesting to use 

the instants when those warning signals are issued as an initiator sequence in our cross-

correlation analysis and analyze the changes in driving performance that may occur as a 

result. We would expect that two types of changes may be observed: intentional (if the 

danger is really obvious) or non-intentional (if the driver is confused about what is 

causing the danger and trying to determine where the danger is coming from). Similarly, 

our cross-correlation method would enable comparisons of different implementations of 

the same warning system with respect to the effect of the warning on driving (magnitudes 

of the most prominent peaks) and the urgency of the reaction to the warning (lags of the 

most prominent peaks). 

Conversing on Hands-Free Cell Phone 
It is well known that talking on both hand-held and hands-free cell phones 

negatively influences driving performance [19]. However, the average-based approach 

that the researchers typically employ characterizes the influences of those interactions on 

driving performance from the high level perspective. In other words, this way we can 

observe only the overall impact of the dialogue on driving. Using our cross-correlation 

method it would be possible to isolate the specific parts of the conversation which 
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contribute the most to decrements in driving performance. Similarly, we could isolate just 

the effects of dialing the phone and compare those to the effects of the conversation itself. 

Exploring the Influences of Out-of-the-Vehicle Distractions 
One area which appears under-researched [56] is the influence of out-of-the-

vehicle distractions on driving performance. Some typical examples of external 

distractions are advertising, signs and even automobile accidents. Our cross-correlation 

method is well suited to extract the effects of these distractions by observing the instants 

when a driver glances towards those. 

Analyzing Speech User Interfaces 
There exists ample evidence in the literature that speech may be the preferred 

choice of interaction in vehicles [100]. However, the automatic speech recognition (ASR) 

engines are still not perfect, which prevents using ambient recognition. Rather, press-to-

talk (PTT) buttons have to be used still, at least for indicating the beginning of an 

utterance. It would be useful to test the effects of using this button through our method. 

Specifically, it would be of interest to observe how the effects on driving change 

depending on the location of the PTT button. Tests could include fixed and location-free 

PTT buttons (such as the custom glove with an embedded PTT button used in [141]), 

which can be operated on curvy roads (require rotating the steering wheel) and on straight 

roads (do not require rotating the steering wheel). The results obtained from these studies 

would help in proposing or testing design choices. 

Fatigue Effects on Driving Performance 
It has been shown in the literature that fatigue negatively influences driving 

[142]. One of the easiest and most useful ways of detecting fatigue is through eyelid 
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closure. Wierwille et al. [143] derived a measure called PERCLOS, which reports the 

proportion of time per minute that the driver’s eyes are at least 80% closed. In addition to 

that information, it would be useful to observe how large the impacts of individual eye-

closures on driving performance are. This can also be accomplished using our cross-

correlation method. 
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APPENDIX A  

DATA SYNCHRONIZATION 

This chapter provides an overview of a software application and hardware 

equipment which I designed for the purpose of data synchronization. Figure A.3 shows 

the equipment which is typically used in our experiments. Since all equipment maintains 

individual data collections a solution was needed which would enable seamless 

synchronization between all available data collections.  

The main component in Figure A.3 is the driving simulator’s control computer 

(a.k.a. HyperDrive) which is connected to the simulator through a local area network 

(LAN). This computer is used for creating scenarios, starting/stopping simulations and 

retrieving data from the simulator after concluding the experiment. Other equipment 

typically includes eye-tracker(s) (FaceLab 5.0 by SeeingMachines) and a physiological 

measurements monitor (ProComp Infinity by Thought Technology).  

In an early attempt at synchronizing the simulator and the eye-tracker, we used 

a third-party application called NTP Fast Track [144], which synchronizes internal clocks 

of the computers of interest over the network. However, this solution proved to be 

unsatisfactory. Namely, if there is a need to restart or turn some of the computers off, the 
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clocks would fall out of sync fairly quickly. Conversely, it takes a considerable amount of 

time (ranging from minutes to hours) to get the computers back in sync, because NTP 

Fast Track adjusts the clocks by applying very small offsets over a long period of time. 

Thus, we needed another solution which would not depend on the computers’ internal 

clocks. Furthermore, our physiological monitor cannot be synchronized over the network.  

 

Figure A.3 Synchronizing experimental equipment. 
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A.1 Hardware Setup 

The hardware setup is shown in Figure A.3. Since the control of the 

experiment is performed from the HyperDrive computer, we decided to use it as a “host” 

which would send the synchronization messages to other computers and/or equipment 

involved in the experiment. The main part which connects HyperDrive with other 

equipment is the synchronization box (Figure A.4). 

 

Figure A.4 Synchronization box. 

The synchronization box allows HyperDrive to communicate with other 

computers using the serial RS-232 connector. HyperDrive should be connected (through 

a null modem converter) to the “Source” terminal, since it is the origin of all the 

synchronization messages. Up to three computers can be synchronized simultaneously 

and they should be connected to the terminals labeled “CH1” to ”CH3.” Additionally, the 
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synchronization box allows synchronizing one ProComp Infinity physiological monitor, 

whose “H” port should be connected to the synchronization box. This connector is 

specifically designed for ProComp Infinity and cannot be used with other physiological 

monitors directly. However, the same synchronization principle can be applied with other 

monitors as well. Finally, an LED indicator is used for a visual confirmation that a 

synchronization signal has been sent. It stays illuminated as long as the DTR line is set to 

high on the RS-232 (more details about this functionality will follow in Section A.3). 

Figure A.5 shows the inside view of the synchronization box, while Figure A.6 shows its 

detailed schematic. 

 

Figure A.5 Inside view of the synchronization box. 
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Figure A.6 Schematic of the synchronization box. 

As we can see in Figure A.6, the synchronization signals are routed from the 

“source” computer (in our case HyperDrive computer) through the null modem converter 

to up to three computers connected to terminals CH1, CH2 and CH3 (in our case eye-

tracking computers). Through the indicator LED the “DTR” line is connected to the opto-

isolator 6N139, which electrically isolates the physiological monitor from the rest of the 

system (which is required by medical safety standards). The opto-isolator plays a role of 

a switch which is closed when DTR line is high and opened when DTR is low. The rest 

of the schematic describes the customized connection with ProComp Infinity. The “red,” 

“shield” and “green” labels indicate the specific wires in the ProComp cable that should 

be connected to the circuit. If a physiological monitor from another manufacturer is 

desired to be used only this part of the circuit should be modified.  

A.2 Software Setup 

The software side of the synchronization is established through an in-house 

made application called SymConnect (Figure A.7). 
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Figure A.7 SymConnect’s main window. 

SymConnect is a multipurpose application which is used for various tasks, 

such as synchronization between the driving simulator, eye-tracker(s) and physiological 

monitor, sending and receiving commands and data between the driving simulator and 

the Project54 application. Each of these procedures will be explained in the following 

sections. The source code for SymConnect is under versioning control (Tortoise SVN 

must be installed and a valid account has  

to exist in order to access the files) and can be found at this address: 

http://pc20m229.unh.edu/svnrepos/hyperdrive/Automation/Controller/SimConnect. The 
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following paragraphs will provide explanations of different functionalities which are 

commonly used in our experiments. 

A.2.1 Configuration Files 

SymConnect has two configuration files. They are needed to properly set up 

the connections with the simulator and Project54. The “configsim.txt” file configures the 

TCP/IP communication with the simulator and contains two lines: the first line is the port 

number that SymConnect listens to, while the second line is the IP address of the local 

computer (the one running SymConnect) on the simulator’s local network. These 

numbers can be changed directly from the above file or from within SymConnect by 

activating “Port and IP” dialog (Figure A.8) in the “Settings” menu (Figure A.9). In both 

cases, the changes take effect after SymConnect is restarted. 

 

Figure A.8 “Port and IP” dialog.  

 

Figure A.9 “Settings” menu. 
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The “configP54.txt” is used to configure the UDP communication with 

Project54 application and contains the IP address of the computer which is running 

Project54.  

A.2.2 Log Files 

Log files record all the activity inside SymConnect. Each time SymConnect is 

started, all log files are appended with a time stamp which contains time and date on the 

local computer. This way, the old data is always preserved and can be easily 

distinguished from the new data. The most important log file is called “measurements.txt” 

and it contains data received from and commands sent to the driving simulator as well as 

sync signals used for synchronizing all the equipment involved in the experiment. 

Another log file is “P54Clicks.txt” which stores commands sent to the Project54 

application (see “Send Commands” option under Section A.2.5). 

A.2.3 Establishing Communication between SymConnect 

and Driving Simulator  

In order to establish the communication between SymConnect and the driving 

simulator a script called “SymConnect2.tcl” (can be found here: 

http://pc20m229.unh.edu/svnrepos/hyperdrive/trunk/includes/SymConnect2.tcl) must be 

included in a desired scenario and invoked from the simulator’s init script. This is done 

from the Hyper Drive application (running on the HyperDrive computer), which is used 

for designing scenarios. The code should be invoked at the beginning of the init script 

using the following syntax:  
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SymConnect2 show_debug_messages sampling_frequency send_to_SymConnect 

If the first parameter is 1, debug messages will be displayed on the screen (default is 0). 

The second parameter is the frequency with which the data will be sent and received from 

SymConnect (default is 60 Hz). The last parameter determines if the data should be sent 

(1) from the simulator to SymConnect or not (0, which is a default value). The data that 

can be received from the simulator can include values of various variables, confirmations 

of completed actions, and so on. They are all stored in the “measurements.txt” log file. 

Similarly, various commands can be sent to the simulator from SymConnect. The 

communication is based on TCP/IP where SymConnect plays the role of the server, while 

the simulator is the client. Thus, SymConnect must be started before a desired scenario 

(with “SymConnect2.tcl” code properly included and invoked, of course) is activated on 

the simulator. Since the simulator can establish only one connection at any given time, 

only one instance of SymConnect can be running on any local computer (for example, 

HyperDrive). This is enforced by creating a dummy file called “SymConnnect.lock” in 

the root of the local computer. The existence of this file is checked each time 

SymConnect is started and in case of its existence a warning message will be displayed 

preventing another instance of SymConnect from starting. Upon SymConnect’s closure, 

the file is deleted. If SymConnect does not close properly, the lock file needs to be 

deleted before SymConnect can be started again. 

One important variable which is defined in “SymConnect2.tcl” script is called 

“::sync_pulse”. This is a global, integer variable which is incremented each time a sync 

signal is sent to the simulator from SymConnect. By analyzing the contents of this 

variable from within the simulator’s code, it is possible to determine both when and how 
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many sync signals have been received. The contents of this variable are stored in the 

“SyncPulse” column inside the driving simulator’s data collection.  

A.2.4 Main Window Options  

Figure A.10 depicts SymConnect’s main window.  

 

Figure A.10 SymConnect window while sending commands to the simulator. 

The main window has multiple regions of interest: 

1. “Server status” indicates whether the simulator is connected to SymConnect. If no 

connection is currently active the text “Waiting for connection…” is displayed. If 
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the connection is successfully established, the text “Simulator is now connected” 

is displayed (see Figure A.10). If the connection is not active and a command is 

sent to the simulator, the text “Socket error while sending packets!” is displayed 

indicating the inability to send the command. 

2.  “Received response” displays values of driving variables of interest and any 

messages received from the simulator (see Figure A.10). All values presented 

here are logged in “measurements.txt” (which can be found inside SymConnect’s 

local folder) together with the local time when each piece of information is 

received. 

3. “Commands history” displays commands sent to the simulator as well as the sync 

signals sent to all the equipment used in the experiment (see Figure A.10).  

4. “Variables” list displays all the variables that can be obtained from the driving 

simulator, such as velocity, lane position, and so on. The “Variables” list is 

automatically populated when SymConnect is started. Its contents are located 

inside the file called “variables.txt.” 

5. “Commands” list displays all the available commands that can be sent to the 

simulator. This includes commands predefined by the simulator software, but also 

user-defined custom commands can be added. This list is populated during 

SymConnect’s startup from the file called “commands.txt.”  

6. Commands text field (located below the “Command history” in Figure A.10) is 

intended for sending commands to the simulator. The commands can be typed in 

manually or invoked from the “Variables” and “Commands” lists. By double-
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clicking on any of the variables inside the “Variables” list, a special command 

(called “addToList”) is added to the commands text field. For example, if we 

double click on variable “Accel” the command “addToList ::Accel” will be added 

to the commands text field. After pressing the “Execute” button, the command is 

sent to the simulator and also written inside the “Commands history” field and 

inside the “measurements.txt” file. This command is then received by the 

“SymConnect2.tcl” code on the simulator and added to an internal list of variables 

whose values are selected to be sent to SymConnect. If enabled within the 

simulation (by invoking “SymConnect2.tcl” code with the send_to_SymConnect 

parameter set to 1), the simulator will start sending the values (at the frequency 

selected in the sampling_frequency parameter) of the selected variable(s) to 

SymConnect. Figure A.10 gives an example of how the received response looks 

like in case of three variables: Velocity, Time and SubjectEngineRPM.  

Similarly, double-clicking on any command in the “Commands” list inserts it 

in the commands text field (such as “VisualsDisplayText” command shown in 

Figure A.10). If available, the selected command’s description is also displayed in 

the field located below the commands text field. The descriptions are located in 

“com_descriptions.txt” file. New commands and descriptions can simply be added 

by editing the above files. One specialized command that can be issued through 

the commands text filed is “Set value.” This command is handled by 

“SymConnect2.tcl” file, which assigns the parameter “value” to a global variable 

called “::test_variable.” The value of this variable can be checked periodically 

within the simulation and then acted upon as desired. For example, if the value of 
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“::test_variable” equals a value of interest, the simulation can display a message 

on the screen or initiate an event in the simulated environment.  

7. “Add Data Marker” and “Add Experiment Separator” are textual indicators used 

for providing reference points in the “measurements.txt” file. They result in 

adding textual lines which contain phrases “Data Marker” and “Experiment 

Separator,” respectively. These indicators may be useful if the experimenter wants 

to indicate when an event of interest occurs (Data Marker) or when the 

experiment should be separated into individual runs (Experiment Separator). Both 

indicators are prefixed with time stamps in the log file and besides different titles 

no other difference exists between those. 

8.  “P54 Client Status” is a simple indicator which confirms whether Project54 

application is running or not. The connection between SymConnect and Project54 

is based on the UDP protocol, which is not as strict as TCP/IP. Thus, the 

connection does not have to be established formally, but rather Project54 will 

receive any messages sent to it at any time. If Project54 application is started 

before SymConnect, it will be detected and “P54 Server is active!” message will 

be displayed (Figure A.10). If this is not the case, “P54 Server is not active!” 

message will be displayed (Figure A.7). After Project54 is started, pressing 

“Reconnect P54” button should establish the connection. 

9. “Message To Project54” text field allows sending commands to any application 

inside Project54 [38;145]. The syntax is as follows: “;to_app;;message_string.” 

The “to_app” parameter indicates the name of the application inside Project54 

that should process the message specified in “message_string.” This functionality 
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is most often used for invoking Project54’s text-to-speech engine (handled by the 

Project54’s “speechio” application). For example, if we want the computer to say 

“hello world,” we would issue the following command: “;speechio;;SAYTHIS 

hello world” (Figure A.11). 

 

Figure A.11 Sending a message to Project54's speechio application. 

10. “Timer” field counts the number of seconds elapsed since “Add Data Marker,” 

“Add Experiment Separator” or “Sync/DTR” (the discussion of this functionality 

will be provided in Section A.3) buttons are pressed. Pressing “Stop Timer” 

button stops the timer and resets it to zero. This functionality may be useful when 

the experimenter needs to activate desired events manually. 

11. The main window also contains the following elements: buttons “Sync/DTR” and 

“Monitor COM,” and indicator text fields “COM port status” and “COM port 

received.” Since these options are used in the process of data synchronization, we 

will postpone the discussion of their usage until Section A.3. 

A.2.5 Settings Menu Options 

The “Settings” menu (see Figure A.9) provides multiple important options 

which are used both for configuring SymConnect and providing additional functionality: 

1. “Erase All Files” option clears the contents of all log files. This option should be 

used cautiously, since the erased data cannot be recovered.  
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2.  “Send commands” is a useful option which enables the experimenter to send pre-

scripted commands to the simulator or Project54 (Figure A.12 presents the 

corresponding dialog window).  

 

Figure A.12 Send commands window. 

The user should first prepare the desired commands in an ordinary text file. As 

an example, let us say that the file is named “user_initiative.txt.” Its example 

contents are depicted in Figure A.13.  

 

Figure A.13 Contents of the file "user_initiative.txt". 
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In order to use the commands specified in this file, it must be loaded into 

“Send commands” window using the “Load Experiment” button or by specifying 

the name of the file in the “Experiment file” text field. Figure A.12 shows how 

the window looks like after the file is loaded. In order for the commands to be 

executed properly, a specific syntax should be followed when creating script files. 

The syntax is illustrated in Figure A.13 and consists of comments and commands.  

Comments: Two types of comments exist and they are distinguished by their 

prefixing symbol: “%” or “*”. The ones that start with “%” are not displayed in 

the “Send commands” window and can be used by the experimenter only while 

compiling the script file (the first two lines in Figure A.13). The second type of 

comments start with an arbitrary number of asterisks (“*”) and they are displayed 

in the “Send commands” window. They can be used to place reminders for the 

experimenter about the necessary steps during the experiment if the commands 

should be activated manually.  

Commands: Based on the desired destination there exist two types of 

commands: commands for Project54 application and commands for the driving 

simulator.  

Commands that should be sent to Project54 have the following syntax:  

<P54>application->command 

The “application” parameter specifies a desired Project54 application, while 

“command” represents a desired command, whose syntax depends on the targeted 
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application. The fifth line in Figure A.13 demonstrates sending a string “Play the 

Black Rider” to the Project54’s “speechio” application.  

Commands intended for the simulator have the following syntax:  

<Simulator>command 

Again, the “command” parameter indicates the name of the command to be sent 

to the simulator (which, of course, must be handled in the “SymConnect2.tcl” 

file). If it is desired for SymConnect to traverse the list of the commands 

automatically (by clicking the “Circulate through list” button, which will be 

explained in the next paragraph), each command line of the script (either 

<Simulator> or <P54>) must be appended with “@time_in_milliseconds” which 

produces a pause corresponding to the specified interval before the next command 

can be issued. This way SymConnect knows how long to wait before issuing the 

next command. Any command can be activated manually by double-clicking on 

the list. Both <P54> and <Simulator> commands are logged in 

“measurements.txt” while a separate log file (“P54Clicks.txt”) is used just for 

<P54> commands.  

Now that we have covered the syntax of the script file, we can look into the 

rest of the interface available in the “Send commands” window. “Up” and 

“Down” buttons move the selection pointer through the list without executing 

commands. Conversely, “Previous Command” and “Next Command” buttons 

move the pointer through the list while executing each command (in doing so, 

commented lines are skipped). “Jump to:” button moves the selection pointer to 

the next <Simulator> or <P54> command (based on the selected check box) and 
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executes it. “Circulate through list” button enables automatic traversal of the list 

items and can start from any position of the selection pointer. This option works 

only if each command line specifies a desired time interval in milliseconds before 

the next command should be executed. If the list traversal is active and the 

selection pointer lands on a command which does not have the time interval 

specified, the traversal will stop automatically. Similarly, the traversal will not 

start unless the selected command specifies a desired time interval. List traversal 

can be stopped by clicking the “Circulate through list” again; however, the 

specified time interval has to elapse before issuing new commands. Finally, the 

list traversal can be paused with the “Pause” button. 

3. The last option in the “Settings” menu is “Set Up COM Port.” This option is 

essential for data synchronization and is used together with multiple controls that 

reside in the SymConnect’s main window: “COM port status”, “Sync/DTR”, 

“Monitor COM”, and “COM port received.” Given their importance, the 

descriptions of the above controls are provided in the next section. 

A.3 Data Synchronization 

The general logic behind data synchronization is fairly simple: the 

experimenter issues sync signals through SymConnect, which are then detected by other 

equipment involved in the experiment and stored in their individual databases. Since the 

sync signal is received by all the equipment simultaneously, it represents the global 

reference point from which the beginning of the experiment should be calculated (i.e. a 

point at which the experiment time should be considered equal to zero). 
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In order to enable the synchronization, we must first set up SymConnect 

properly. Since SymConnect uses RS-232 for sending sync signals to other computers 

and the physiological monitor, we must select an appropriate COM port first. To do that, 

we choose “Set Up COM Port” option under the “Settings” menu. A dialog depicted in 

Figure A.14 appears.  

 

Figure A.14 COM port selection. 

Clicking “Search available COM ports” will find all the available COM ports 

on the local computer and display those in the “Select desired COM port” list. The 

desired COM port should then be selected from the list. If desired, the experimenter can 

confirm if the selected port is correct by specifying the duration of the test signal in the 

“Signal length [sec]” field and clicking the “Test DTR” button. This will produce a DTR 

signal of the specified duration on the RS-232 connector, which can be visually inspected 

by observing the indicator LED on the synchronization box (see Figure A.4). By clicking 

the “OK” button, the selected COM port is saved and opened with the following 

characteristics of the serial communication: 8 data bits, no parity, 1 stop bit, 1200 baud 
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and software flow control set to on. After the COM port is successfully opened, two 

changes occur in the SymConnect’s main window (see Figure A.15). First, the “COM 

port status” indicator changes from “COM port not selected!” to “COM1 is active” which 

is an indication that the port (COM1 in our case) was successfully initialized and 

synchronization is possible. And second, the buttons “Sync/DTR” and “Monitor COM” 

become available. More details about the usage of these buttons will follow shortly. 

 

Figure A.15 Synchronization is enabled by activating the COM port. 

As we mentioned before, only one instance of SymConnect can be running on 

any computer. However, multiple instances can be running on separate computers. As a 

matter of fact, this is even required when the synchronization is preformed with the eye-

tracker computer(s) or any other computer. The instance of SymConnect that the 

experimenter is using for issuing sync signals (from now on, we will refer to it as “main” 

SymConnect) should be running on the HyperDrive computer (alternatively, it can run on 

any other computer connected to the simulator’s network, with IP addresses correctly 

specified inside SymConnect and “SymConnect2.tcl”; however, since in our case 

HyperDrive controls the simulation and retrieves the data, it is natural for it to run the 

main instance of SymConnect as well).  

Sending sync signals is accomplished by clicking the “Sync/DTR” button in 

the main instance of SymConnect, which invokes a function named 

“OnBnClickedButtonmanualdtr.” This function generates three consecutive sync 



 

322 
 

signals, one for each device that can be synchronized: eye-tracker (symbol “s”), driving 

simulator (word “SYNC”) and physiological monitor (high level on DTR line on the RS-

232 connector). We tested how fast those sync signals are issued in a typical 

experimental setting by periodically clicking the “Sync/DTR” button (every 2 seconds) 

for 2000 times. Each time this button is pressed, SymConnect logs the local time when 

each of the three sync signals was issued. By comparing those times we determined that 

the delay between sending those signals was always equal to 0 msec, which indicates that 

they were indeed sent to their recipients at the same time. 

Synchronizing eye-tracker: Since the eye-tracker software cannot directly 

accept sync signals, it is necessary to run a separate (“secondary”) instance of 

SymConnect on the eye-tracker’s computer. The setup of this instance is exactly the same 

as with the main SymConnect, however, the “Monitor COM” button should be activated. 

Clicking the “Monitor COM” button invokes a function named 

“OnBnClickedButtonmanualrts.” This function performs multiple actions: 

disables the “Sync/DTR” button, displays the word “Waiting” (Figure A.16, left) in the 

“COM port received” text field and starts a thread named “COMCheck,” which puts the 

application in the “listening” mode, where it waits for the sync signals coming from the 

selected COM port. What this means is that “COMCheck” waits (in a blocking “Read” 

call) until some content appears in the buffer of the selected COM port. Specifically, the 

code checks if the received symbol is “s” which is an indication that the sync signal was 

received from the main SymConnect. The receipt of the sync signal is indicated by the 

word “SYNC” in the “COM port received” field (Figure A.16, right). Multiple sync 

signals can be received from the main instance of SymConnect and all of them are 
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recorded in the “measurements.txt” log file together with their corresponding time 

stamps. Naturally, sync signals are also recorded inside the main SymConnect’s log file 

as well. Since the eye-tracker software assigns the local time to each data sample 

collected in its database, and because it is known when the sync signal is received in the 

local time (by observing the “measurements.txt” log file coming from the local instance 

of SymConnect), it is possible to pinpoint the exact location in the eye-tracker’s database 

when the sync signal is received by the eye-tracker computer. This time then becomes the 

“zero” reference point for the eye-tracker data. 

 

Figure A.16 Waiting for sync signal (left) and signal received (right). 

In order to test the time delay that elapses between sending the sync signal 

from the main SymConnect and receiving it by the secondary SymConnect, we 

performed a round-trip delay test. In this test a sync signal is sent to the secondary 

SymConnect and immediately reflected back to the main SymConnect. If we measure the 

total round-trip time and divide it by two, we can obtain the time delay that is necessary 

for the secondary SymConnect to receive the sync signal from the main SymConnect 

(one-way delay). By periodically sending the sync signal (approximately every 2 

seconds) for 3000 times, we obtained the following results for the one-way delay: 

maximum delay 46.5 msec, minimum delay 39 msec, average delay 40 msec and 

standard deviation of the delay 2.6 msec. Based on this test we can make two 

conclusions. First, the delay varies very little, which indicates its consistency and 

reliability. And second, it is much smaller than our data sampling period of 100 msec, 
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which indicates that it provides much higher precision than necessary for our data 

collection. 

Synchronizing driving simulator: In case of the driving simulator, 

“SymConnect2.tcl” code handles the synchronization. It listens on the selected port (recall 

that in this case it is a TCP/IP port) for the received packets from the main SymConnect 

by periodically (this frequency can be customized, but default is 60 Hz) pooling the 

contents of the port. If the received packet contains the word “SYNC,” a global variable 

“::sync_pulse” (defined in “SymConnect2.tcl”) is incremented by 1. Its value is then 

written in the data collection under the column named “SyncPulse.” This way the number 

of sync signals is counted, so the value assigned to the “SyncPulse” column reflects both 

the number and the time when each sync signal is received. 

In order to test the time delay that elapses between the sending of the sync 

signal from the main SymConnect and receiving it by the simulator, we performed the 

same round-trip delay test as in the case of COM port communication, by periodically 

(approximately every 2 seconds) sending a total of 2000 sync signals. We obtained the 

following results for the one-way delay: maximum delay 7.5 msec, minimum delay 0 

msec, average delay 6.3 msec, standard deviation of the delay 2.7 msec. Based on these 

results we can obtain the same conclusions as with the COM communication: the delay is 

very consistent and reliable and provides significantly higher precision compared to our 

data collection period of 100 msec. 

Synchronizing physiological monitor: Finally, in case of the physiological 

monitor, main SymConnect raises the DTR line on the RS-232 connector to a high level 

for the number of seconds specified in the “Signal length [sec]” field in the “COM Port 
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Selection” dialog window (default value is 0.5 seconds). This change in the voltage level 

is then transmitted by the synchronization box to the physiological monitor (H slot should 

be connected to the synchronization box). The change in the voltage level is sampled by 

the physiological monitor’s A/D converter and recorded in the device’s database, thus 

allowing precise determination of the zero reference. Our physiological monitor 

(ProComp Infinity) samples its H port at 256 Hz. Unfortunately, it has no capability to 

reflect the received sync signal to the origin in order to analyze the one-way delay. 

However, since all the components involved in synchronizing the physiological monitor 

are hardware based, we can be fairly certain in assuming that the maximum delay is not 

larger than 1/256 = 3.9 msec, which provides much higher precision compared to the 

sampling period of 100 msec used in collecting the rest of the data. 

A.4 Simple Experiment Example 

Since all the important data pertaining to SymConnect is collected in 

“measurements.txt” we will look at its contents using a simple experiment. Imagine that 

we want to synchronize a single eye-tracker computer with the simulator and also to 

observe three simulator variables in real time through the main instance of SymConnect: 

Velocity, Time and SubjectEngineRPM. We will assume that the main SymConnect 

resides on the HyperDrive computer and the secondary SymConnect resides on the eye-

tracker computer. Also, the eye-tracker and the HyperDrive computers must be connected 

to the synchronization box as depicted in Figure A.3. Finally, “SymConnect2.tcl” must be 

properly included and invoked in the desired simulated scenario in order to establish the 

communication with the main SymConnect on the HyperDrive computer. The following 
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steps should be completed (steps 1 through 5 are general synchronization steps and 

should be performed at the beginning of every experiment): 

1. Start main SymConnect on the HyperDrive computer and select a desired 

COM port, 

2. Start secondary SymConnect on the eye-tracker computer, select desired COM 

port and activate “Monitor COM” option, 

3. Start eye-tracking,  

4. Start a desired simulated scenario and wait until the simulator successfully 

connects to the main SymConnect (indicated by the string “Simulator is now 

connected.”), 

5. Press the “Sync/DTR” button, which sends the sync signals to all connected 

equipment. Visual confirmation can be accomplished by observing both the 

LED indicator on the synchronization box as well as by observing the “COM 

port received” field in the secondary SymConnect on the eye-tracker computer. 

Furthermore, the sync signal can be detected inside the simulator’s init script 

by examining the value of a global variable named “::sync_pulse” which is 

defined inside the “SymConnect2.tcl” script. This variable is used for counting 

the number of issued sync signals and for initializing the contents of the 

“SyncPulse” column inside the simulator’s data collection. By detecting 

changes in the “::sync_pulse” variable we can program various actions to be 

performed inside the simulator. For example, confirmation messages can be 
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displayed on the screen, which would give a visual indication when the sync 

signal is received. 

6. (Optional) As per our example, we should double-click on each of the desired 

variables in the “Variables” list in the main SymConnect followed by the 

“Execute” button (see Figure A.10).  

7. (Optional) If desired, by clicking on the “Data Marker” and “Experiment 

Separator” buttons it is possible to indicate important parts of the experiment 

by adding their corresponding markers in the “measurements.txt” file. 

Figure A.12 shows the abbreviated version of the main SymConnect’s 

“measurements.txt” file after performing the simple experiment described above. Row 

numbers that can be seen at the beginning of each line are not part of the 

“measurements.txt” file and they were added in order to facilitate the explanation of the 

file’s contents. 
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Figure A.17 Sample main SymConnect’s “measurements.txt” file. 

Line 1 indicates the date and time when SymConnect was started. As we can 

see, each line is preceded with the local time stamp. Received data is symbolically 

indicated by “>>”, while the data sent by SymConnect is indicated by “<<”. Line 2 

indicates that the simulator successfully established the connection with SymConnect. 

Lines 3, 4 and 5 indicate when the experimenter pressed the “Sync/DTR” button. By 
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doing so, the following three sync signals were generated: for the secondary SymConnect 

on the eye-tracker’s computer (“Remote SYNC”), for the driving simulator (“Sim 

SYNC”) and for the physiological measurements monitor (“<PM>DTR”). Line 6 

indicates when the experimenter added “Velocity” to be received from the simulator. 

Similarly, lines 9 and 12 indicate adding “Time” and “SubjectEngineRPM” variables. 

Immediately after adding each of those variables, the simulator starts periodically (at the 

frequency specified when invoking “SymConnect2.tcl”) sending their values to 

SymConnect. This can be seen in the lines containing the names of the above variables. 

Finally, lines 19 and 23 indicate when the experimenter pressed the “Experiment 

Separator” and “Data Marker” buttons, respectively. 

Finally, Figure A.18 shows how the secondary SymConnect’s 

“measurements.txt” file looks like after concluding the experiment. As we can see, it 

contains one sync signal and indicates the local time when it was sent from the main 

SymConnect. 

 

Figure A.18 Sample secondary SymConnect's "measurements.txt" file. 

A.5 Synchronizing Audio Recordings 

The previous sections demonstrated how to synchronize data collections 

located on multiple computers which are commonly involved in driving simulator 

experiments. Besides log files, it may be of interest to synchronize audio recordings as 

well. Namely, in case of driving simulator studies which explore auditory interactions it 
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is useful to record participant’s utterances. These audio recordings can be used in post-

processing to analyze various aspects of conversation, such as pauses, number of words 

uttered per minute, word choices, interruptions, etc. For this to be possible, it is necessary 

to synchronize the audio recordings with the rest of the equipment.  

One possible implementation is to introduce an audible signal (“beep”) into the 

audio recording (this has to be done through mixing, which we do not describe here) at 

the same time the sync signal is issued from the main SymConnect (as a reminder, this 

sync signal is received by all the equipment involved in the experiment, thus representing 

a “global reference” which indicates the beginning of the experiment). As explained 

before, the occurrence of the sync signal can be detected in the simulator’s script by 

periodically examining if the value of the global variable “::sync_pulse” (defined in 

“SymConnect2.tcl”) has changed. This variable reflects the number of sync signals 

received from SymConnect, so by comparing the new value with the saved old value we 

can decide when the signal actually appeared.  

The simulator provides one digital output signal which can be controlled from 

within the init script. This signal is used to control the dashboard light and its status can 

be set to on or off using the predefined command “VehicleSetDashLight”. When the sync 

signal is detected, the following command should be executed inside the init script for a 

predefined amount of time (0.5 seconds appears to be enough for easy detection in an 

audio file): 

VehicleSetDashLight On 

After the predefined time period elapses, the signal should be turned off using the same 

command, but with the parameter set to “Off”. The result of these actions is a digital 
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signal with a value of 0 before the sync signal is received, ܸ for 0.5 seconds after the 

sync signal, followed by 0 again (see Figure A.19). 

 

Figure A.19 Dashboard light signal. 

Now that we have a physical signal (dashboard light) from the simulator, we 

can use it for synchronizing an audio signal. For this purpose, a simple astable 

multivibrator circuit was designed (Figure A.20).  

 

Figure A.20 Breadboard with the astable multivibrator circuit. 
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This circuit is powered by the “dashboard light” signal from the simulator. Its 

“AudioSyncIn” connector should be connected to the “DashLightPin” connector from the 

simulator (3.5 mm audio jack located in the front of the simulator next to the steering 

wheel optical encoder). When the dashboard light signal is on, the circuit starts 

oscillating. This produces a pulse train at the “AudioSyncOut” connector at the frequency 

which falls into the audible range. Both the frequency and the amplitude of the audio 

signal can be adjusted using the two potentiometers that can be seen in Figure A.20. This 

signal can then be mixed with a desired audio recording using an audio mixer or recorded 

individually as a separate audio channel. Figure A.21 depicts the schematic of the circuit. 

 

Figure A.21 Audio synchronization circuit schematic. 

Since the dashboard light signal turns on by default whenever the simulator’s 

cabin is first powered on, it is necessary to turn it off before connecting the 
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“AudioSyncOut” connector to an audio recording device. Otherwise, the circuit will 

continuously produce the synchronization sound. This can be accomplished by starting 

any simulation which has “VehicleSetDashLight Off” command specified at the 

beginning of the init script. This will set the dashboard light signal to 0 and it will remain 

0 as long as the simulator cabin remains turned on or the experimenter manually toggles 

the signal to 1. Once this is done, dip switches 1 and 2 can be moved to their “up” 

positions, which will enable the output.  
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APPENDIX B  

EXPERIMENTAL APPARATUS 

This appendix provides descriptions of the equipment employed in various 

studies throughout this dissertation, specifically driving simulator, eye-tracker and 

physiological monitor. 

B.1 Driving Simulator 

The experiments described in this dissertation were performed in a Drive 

Safety DS-600c Research Simulator [110]. It is a high-fidelity driving simulator (Figure 

B.22), with the following characteristics: 

1. 5 visual channels: 3 front channels which make a 180° field of view screen, 2 side 

mirrors and 1 rear-view mirror, 

2. full-width car cabin (Ford Focus) with realistic vehicle dynamics (vibrations and 

sounds): motion platform providing inertial cues through a combination of ±2.5° 

pitch and 5 inch longitudinal movement, haptic feedback on the steering wheel, 

gas and brake pedals and a fully functional dashboard with the corresponding 

instrumentation. 
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Figure B.22 High fidelity driving simulator. 

The simulated environments (scenarios) are designed using a graphical user 

interface (GUI), which supports various surroundings, such as urban, rural, residential, 

suburban, industrial and commercial. The system possesses an extensive library of 

different road types, intersections, road signs, vehicles, and so on. There is a support for 

fully automated ambient vehicles which obey the traffic laws, signs, traffic lights and 

adjust their decisions based on the human behavior. Using the Tcl/Tk scripting language, 

the researchers can predefine the behavior of the objects of interest (such as pedestrians 

or vehicles), thus making it possible to simulate a wide variety of traffic situations. 

Furthermore, Tcl/Tk allows communication over the local area network (LAN), which 

makes it possible to exchange data between the simulator and a third party software in 

real time while the simulation is running. As we had a chance to see in Appendix A this 

capability has been used in our driving simulator studies for the purpose of 
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synchronization with the external data collections or issuing commands to the simulation 

system. The simulator provides a wide range of standard driving performance data (such 

as lane position, velocity, acceleration, steering wheel angle, etc.) at selectable sampling 

rates of up to 60 Hz. 

B.2 Eye-tracker 

Most of our studies employed an eye-tracker for analyzing drivers’ visual 

attention. We used a Seeing Machines [146] faceLab 5.02 stereoscopic remote eye-

tracker. The eye-tracker was mounted in front of the driver on top of the dashboard (see 

Figure B.23). As we can see in Figure B.23, the eye-tracker consists of two cameras and 

an infrared illuminator, which produces a reflection in subject’s eyes that the software is 

using for tracking the eye movement. 

 

Figure B.23 Eye-tracker mounted on top of the dashboard. 
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Figure B.24 shows a view of the participant as seen by the eye-tracker. The 

green vectors coming out from the participant’s eyes indicate the direction of the gaze, 

while the red vector that can be seen between the eyes indicates the direction of the head. 

The caption “FrontScreen” indicates that the gaze is directed towards the simulator’s 

front screen. The number “00000354” shows the number of the current frame for which 

the calculations are performed. This information is very useful when manual correction 

of the eye-tracker data is necessary (for example, when the eye-tracker looses tracking 

due to the subject obstructing the view of the cameras with hands or when turning the 

head too far to either side).  

 

Figure B.24 A view of the participant as seen by the eye-tracker. 

The eye-tracker software provides various data corresponding to the eye and 

head movements at the rate of up to 60 Hz. Some of the data we were interested the most 

in our studies included objects that a participant is focusing on (used in post-experiment 

analyses to calculate the PDT on the road ahead, glance duration and glance frequency 

away from the road, number of glances, etc.) and pupil diameter. As described in Chapter 

2, pupil diameter may be useful in describing the overall experienced cognitive load. The 
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eye-tracking software provides an estimate of pupil diameter based on an ellipse fitting 

algorithm. Figure B.25 shows how the fitted pupil diameter looks like (green ellipses). 

 

Figure B.25 Fitted pupil diameter. 

Finally, the software allows defining a virtual car cabin with all the objects of 

interest specified with respect to their size and spatial location. Figure B.26 shows how 

the virtual model looks like in the case of our driving simulator.  

 

Figure B.26 Virtual model of the car cabin. 
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There are multiple objects in the model, for instance, front screen, rear view 

mirror, GPS, speedometer, etc. The yellow avatar simulates the participant’s head. There 

are two vectors which protrude from the avatar: green and red. The green vector indicates 

the direction of the subject’s gaze, while the intersection between this vector and any 

object in the model indicates the object that the participant is looking at (green dot on the 

“FrontScreen” in Figure B.26). Similarly, the red vector shows the direction of the head. 

B.3 Physiological Monitor 

Figure B.27 shows the physiological monitor which was employed in our 

studies. It is a Thought Technology ProComp Infinity [147] physiological monitor. 

 

Figure B.27 Physiological monitor and the corresponding sensors for skin conductance 

and heart rate. 
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ProComp Infinity has 8 channels of which two are sampled at 2048 Hz and 6 

are sampled at 256 Hz. As we can see in Figure B.27 we used two channels: one for the 

heart rate sensor (channel A, 2048 Hz) and one for the skin conductance sensor (channel 

E, 256 Hz). If we recall from Appendix A, we also used one additional channel for data 

synchronization (channel H, 256 Hz). The sampled data can be recorded directly on a 

computer through an optical cable or can be stored locally on an SD card. 

The original skin conductance sensor consisted of two electrode straps (Figure 

B.28, right) which should be mounted on the tips of the fingers. However, there are two 

reasons which made this solution unsatisfactory in the driving simulator. First, since the 

participants were required to operate the steering wheel, the cables would often get 

entangled. This increased the obtrusiveness of the sensor and made the driving 

experience unnatural. And second, operating the steering wheel often resulted in the 

wires detaching from the electrode straps (as we can see on the right of Figure B.28, the 

wires are attached with the snap-on buttons). Given these problems I decided to embed 

the electrodes in a glove (Figure B.28, left), which solved both of the above problems. 

 
Figure B.28 Skin conductance electrodes embedded in a glove (left) and electrode straps 

(right). 
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B.4 Institutional Review Board Form 

UNIVERSITY OF NEW HAMPSHIRE 

INSTITUTIONAL REVIEW BOARD FOR THE PROTECTION OF HUMAN 

SUBJECTS IN RESEARCH 

Purpose:   

This research is funded by the National Institute of Justice (NIJ). The purpose 

of this research is to assist in the development of speech user interfaces as well as other 

user interfaces for mobile environments such as vehicles and handheld computers. 

Another goal is to develop specific applications for mobile environments, specifically for 

vehicles and for places where people use handheld computers.  

Procedure:   

You will be asked to interact with the Project54 system running on a PC and/or 

on a handheld computer. You may also be asked to perform a physical task, such as 

operating a driving simulator. The Project54 system will record your speech, and/or your 

interactions with the GUI and/or your interactions with original hardware interfaces, 

and/or data generated by electronic devices that you interact with and/or data generated 

by electronic devices that the Project54 system interacts with. The recording will require 

no special steps on your part. You will also be asked to respond to questionnaires that 

will ask for personal information and feedback about the experiment. 

You will be asked to interact with a PC and/or on a handheld computer and/or 

other electronic devices. You may also be asked to perform a physical task, such as 

operating a driving simulator. We will create audio and/or video recordings of your 
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interactions. We will also record your interactions with the computer’s GUI and/or your 

interactions with other hardware interfaces, and/or data generated by the computer and/or 

by the electronic devices. We may also record physiological measurements from sensors 

attached to your body (e.g. temperature, electrocardiogram, skin conductance sensors), 

and/or sensors in your environment (e.g. pressure sensors on objects in your environment, 

gaze and head position trackers). You will also be asked to respond to questionnaires that 

will ask for personal information and feedback about the experiment. 

Data generated in this research will be saved for use in future research. A 

unique ID will be assigned to you. The unique ID will be of the form “User #xx”, where 

xx is the number assigned to you. It will be used to label your data, along with your age, 

gender, characteristics of your speech, your experience in working with computers or the 

Project54 system and any questionnaires you fill out. The data will be stored for future 

use in our research; there is no set date for destruction of the data, and it may be kept for 

an unlimited duration. Your identity will not be tied to the data in any way other than to 

the video data, if such data is created, since video data may visually identify you. Video 

data may be generated by stand-alone video cameras and by cameras that are part of a 

gaze and head tracker. In this document we are asking for your consent to participate in 

our study and to share the non-video data with researchers from other institutions. 

Separately we ask for your consent to share video data with researchers from other 

institutions, to include still shots from videos in scientific publications and technical 

reports, as well as to show video data at conferences and similar meetings. Finally, we 

also ask for your consent to share video data with the public by posting video clips, or 
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still shots from the clips, online (on sites such as Flickr or YouTube), or by including 

them in printed publications. 

The only risks associated with this research are the potential of skin irritation 

from sensors attached to your body and the potential for motion sickness if operating a 

driving simulator. There should be no aftereffects of this research upon you.  You will be 

compensated at approximately $___/hour for your effort. Your compensation may be in 

the form of a check or in the form of a gift certificate or in the form of a software license 

(provided by Microsoft). You may have to fill out a W-9 form. Checks will be mailed by 

UNH. Your compensation may be reported to the IRS. 

1.  You understand that the use of human subjects in this project has been 

approved by the UNH Institutional Review Board for the Protection of Human Subjects 

in Research. 

2. You understand the scope, aims, and purposes of this research project and 

the procedures to be followed and the expected duration of your participation. 

3. You have received a description of any reasonable foreseeable risks or 

discomforts associated with being a subject in this research, have had them explained to 

you, and understand them. 

4. You have received a description of any potential benefits that may be 

accrued from this research and understand how they may affect you or others. 

5.  The investigator seeks to maintain the confidentiality of all data and 

records associated with your participation in this research. You should understand, 

however, there may be rare instances when, in order to comply with policy, regulations or 
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laws, the investigator is required to share personally-identifiable information for 

research-related purposes (e.g., officials at the University of New Hampshire, designees 

of the sponsor(s), and/or regulatory and oversight government agencies may require 

access to research data in order to investigate a complaint about the conduct of the 

research).  Personally-identifiable information will not be released for non-research 

purposes without your prior consent. 

6. You understand that your consent to participate in this research is entirely 

voluntary, and that your refusal to participate will involve no prejudice, penalty or loss of 

benefits to which you would otherwise be entitled. 

7. You further understand that if you consent to participate, you may 

discontinue your participation at any time without prejudice, penalty, or loss of benefits 

to which you would otherwise be entitled. 

8. You confirm that no coercion of any kind was used in seeking your 

participation in this research project. 

9. You understand that if you have any questions pertaining to the research 

you can call Dr. Andrew Kun at 603-862-4175 and be given the opportunity to discuss 

them. If you have questions pertaining to your rights as a research subject you can call 

Julie Simpson in the UNH Office of Sponsored Research, 603-862-2003, to discuss them. 

10. You understand that your age, gender, the characteristics of your speech, 

and your experience in working with computers or the Project54 system will be recorded, 

and may be shared with other researchers, along with the data collected about your 

interactions. 
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11. You certify that you have read and fully understand the purpose of this 

research project and the risks and benefits it presents to you as stated above. 

 

I,  ______________________________ CONSENT/AGREE to 

participate in this research project. 

I,  ______________________________ REFUSE/DO NOT AGREE 

to participate in this research project. 

___________________________               _____________________ 

Signature of Subject                                              Date 

 

I,  ______________________________ CONSENT/AGREE to allow 

sharing video data with other researchers, including still shots from videos in scientific 

publications and technical reports, and showing video data at conferences and similar 

meetings. 

I,  ______________________________ REFUSE/DO NOT AGREE 

to allow sharing video data with other researchers or showing it at conferences and 

similar meetings. 

___________________________               _____________________ 

Signature of Subject                                              Date 
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I,  ______________________________ CONSENT/AGREE to allow 

sharing video data with the public by posting video clips, or still shots from the clips, 

online, or by including them in printed publications. 

I,  ______________________________ REFUSE/DO NOT AGREE 

to allow sharing video data with the public by posting video clips, or still shots from the 

clips, online, or by including them in printed publications. 

__________________________            ____________________ 

Signature of Subject                                          Date 
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B.5 NASA-TLX Description Presented to Participants 

NASA-TLX questionnaire consists of six scales. Table B.3 provides the 

description of the scales (adapted from [148]) which was handed to participants each time 

they were required to fill out the NASA-TLX questionnaire. 

Scale Endpoints Description 

Mental Demand Low/High How much mental and perceptual activity was 
required (e.g., thinking, deciding, calculating, 
remembering, looking, searching, etc.)? Was the task 
easy or demanding, simple or complex, exacting or 
forgiving? 

Physical 
Demand 

Low/High How much physical activity was required (e.g., 
pushing, pulling, turning, controlling, activating, 
etc.)? Was the task easy or demanding, slow or brisk, 
slack or strenuous, restful or laborious? 

Temporal 
Demand 

Low/High How much time pressure did you feel due to the rate 
or pace at which the tasks or task elements occurred? 
Was the pace slow and leisurely or rapid and frantic? 

Performance Good/Poor How successful do you think you were in 
accomplishing the goals of the task set by the 
experimenter (or yourself)? How satisfied were you 
with your performance in accomplishing these goals? 

Effort Low/High How hard did you have to work (mentally and 
physically) to accomplish your level of performance? 

Frustration Low/High How insecure, discouraged, irritated, stressed, and 
annoyed or secure, gratified, content, relaxed, and 
complacent did you feel during the task? 

Table B.3 Description of NASA-TLX scales. 
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APPENDIX C  

CHECKING ASSUMPTIONS BEHIND CROSS-

CORRELATION MODELS 

This appendix provides various graphs which were generated in Chapter 4 for 

the purpose of analyzing potential problems with the dataset used in modeling our cross-

correlation results. Specifically, for each reference study (highway and city driving), 

cross-correlation result (cumulative and per-glance) and underlying driving performance 

variables which were used in obtaining the cross-correlation results (steering wheel angle 

and lane position) we present the following graphs: normal quantile plot, box plot and 

histogram of studentized residuals as well as residuals versus predicted plots.  

Studentized residuals should be distributed as close as possible to a normal 

distribution. This assumption is satisfied if the data approximately follows a straight line 

(secondary diagonal line presented in each normal quantile plot) and if the histogram and 

the box plot are approximately symmetric about 0. 

Residuals versus predicted plots are used to check for heteroscedasticity and 

missing variables. If none of these two problems are present, the data points should be 
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distributed approximately randomly about the 0 point on the vertical axis (residual axis). 

If the spread of the data points appears very different in one part of the graph compared 

to the other, heteroscedasticity may be a problem. On the other hand if the structure of the 

data points indicates some non-random patterns, it is a sign that the model does not 

account for all important trends in the data and that more explanatory variables should be 

included in the model. 

As we will see in the graphs presented in the following sections, the 

distributions of studentized residuals were always very close to normal and no problems 

have been observed regarding heteroscedasticity and missing variables for any of our 

regression models. 
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C.1 Testing Cumulative Steering Wheel Angle Cross-Correlation 

Models for Highway Study 

Figure C.29 Highway study: Distributions of studentized residuals for CML_M1_SWA 

(left) and CML_M2_SWA (right). 

 

 
Figure C.30 Highway study: Residuals versus predicted plots for CML_M1_SWA (left) 

and CML_M2_SWA (right). 
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C.2 Testing Cumulative Lane Position Cross-Correlation Models 

for Highway Study 

Figure C.31 Highway study: Distributions of studentized residuals for CML_M1_LP 

(left) and CML_M2_LP (right). 

 

Figure C.32 Highway study: Residuals versus predicted plots for CML_M1_LP (left) and 

CML_M2_LP (right). 
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C.3 Testing Cumulative Steering Wheel Angle Cross-Correlation 

Models for City Study 

Figure C.33 City study: Distributions of studentized residuals for CML_M1_SWA (left) 

and CML_M2_SWA (right). 

 

Figure C.34 City study: Residuals versus predicted plots for CML_M1_SWA (left) and 

CML_M2_SWA (right). 
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C.4 Testing Cumulative Lane Position Cross-Correlation Models 

for City Study 

Figure C.35 City study: Distributions of studentized residuals for CML_M1_LP (left) and 

CML_M2_LP (right). 

 

Figure C.36 City study: Residuals versus predicted plots for CML_M1_LP (left) and 

CML_M2_LP (right). 
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C.5 Testing Per-Glance Steering Wheel Angle Cross-Correlation 

Models for Highway Study 

 

Figure C.37 Highway study: Distribution of studentized residuals (left) and residuals 

versus predicted plot (right) for PG_M_SWA model. 
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C.6 Testing Per-Glance Lane Position Cross-Correlation Models 

for Highway Study 

Figure C.38 Highway study: Distribution of studentized residuals (left) and residuals 

versus predicted plot (right) for PG_M_LP model. 
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C.7 Testing Per-Glance Steering Wheel Angle Cross-Correlation 

Models for City Study 

Figure C.39 City study: Distribution of studentized residuals (left) and residuals versus 

predicted plot (right) for PG_M_SWA model. 
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C.8 Testing Per-Glance Lane Position Cross-Correlation Models 

for City Study 

Figure C.40 City study: Distribution of studentized residuals (left) and residuals versus 

predicted plot (right) for PG_M_LP model. 
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C.9 Testing Cumulative Steering Wheel Angle Cross-Correlation 

Models for Pooled Highway and City Studies 

Figure C.41 Distributions of studentized residuals for CML_M1_SWA (left) and 

CML_M2_SWA (right) models. 

 

Figure C.42 Residuals versus predicted plots for CML_M1_SWA (left) and 

CML_M2_SWA (right) models. 
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C.10 Testing Cumulative Lane Position Cross-Correlation 

Models for Pooled Highway and City Studies 

Figure C.43 Distributions of studentized residuals for CML_M1_LP (left) and 

CML_M2_LP (right) models. 

 

Figure C.44 Residuals versus predicted plots for CML_M1_LP (left) and CML_M2_LP 

(right). 
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C.11 Testing Per-Glance Steering Wheel Angle Cross-Correlation 

Models for Pooled Highway and City Studies 

Figure C.45 Distribution of studentized residuals (left) and residuals versus predicted 

plot (right) for PG_M_SWA model. 
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C.12 Testing Per-Glance Lane Position Cross-Correlation Models 

for Pooled Highway and City Studies 

Figure C.46 Distribution of studentized residuals (left) and residuals versus predicted 

plot (right) for PG_M_LP model. 
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